
Relevance Feedback Retrieval of Time Series Data
Eamonn J. Keogh

Dept of Info and Computer Science
University of California, Irvine

California 92697 USA
(949) 824-7210

eamonn@ics.uci.edu

Michael J. Pazzani
Dept of Info and Computer Science

University of California, Irvine

California 92697 USA
(949) 824-7405

pazzani@ics.uci.edu

ABSTRACT
There has been much recent interest in retrieval of time series
data. Earlier work has used a fixed similarity metric (e.g.,
Euclidean distance) to determine the similarity between a user-
specified query and items in the database. Here, we describe a
novel approach to retrieval of time series data by using relevance
feedback from the user to adjust the similarity metric. This is
important because the Euclidean distance metric does not capture
many notions of similarity between time series. In particular,
Euclidean distance is sensitive to various “distortions” such as
offset translation, amplitude scaling, etc. Depending on the
domain and the user, one may wish a query to be sensitive or
insensitive to these distortions to varying degrees. This paper
addresses this problem by introducing a profile that encodes the
user's subjective notion of similarity in a domain. These profiles
can be learned continuously from interaction with the user. We
further show how the user profile may be embedded in a system
that uses relevance feedback to modify the query in a manner
analogous to the familiar text retrieval algorithms.

Keywords
Time series, multimedia data, relevance feedback, modeling user
subjectivity.

1. INTRODUCTION
Time series account for a significant portion of the data stored in
business, medical, engineering, and social science databases.
There are innumerable statistical tests one can perform on time
series, such as determining autocorrelation coefficients, measuring
linear trends, etc. Much of the utility of collecting this data,
however, comes from the ability of humans to visualize the shape
of the (suitably plotted) data. For example:

• Cardiologists view ECGs to diagnose arrhythmias [8].

• Chartists examine stock market data, searching for certain

shapes that are thought to be indicative of a stock’s future

performance [5].

• Astronomers examine star light curves (the changes in
frequency over time) to classify stars [13].

Unfortunately, the sheer volume of data collected means that only
a small fraction can ever be viewed. For example, the MACHO
dataset, a collection of time series consisting of star light
intensities, is over 500 gigabytes [17]. Given the size of such
datasets, most of the research on information retrieval for time
series has focused on speeding up the retrieval time for query by
content. However, two important issues in time series retrieval
have not yet been explored.

• Relevance Feedback: In time series domains, as in text
domains, users may not initially know how to form a query
to retrieve precisely what they are looking for. In text
domains, relevance feedback is used to solve this problem. In
this paper, we show how relevance feedback may be applied
to retrieval of time series data to learn which sections of the
time series are most significant in a manner analogous to
modifying the weight of terms in text retrieval. For example,
a cardiologist might want to retrieve the electrocardiograms
of previous patients that are similar in some way to that of
the current patient. By providing feedback on the quality of
the initial items retrieved, the cardiologist can indicate which
similarities are significant for this task.

• Subjectivity of similarity: Most work on retrieval of time series
has used Euclidean distance (or some approximation or
extension thereof) as the distance measure. However, there is
little evidence that Euclidean distance maps onto human
intuition of similarity. Indeed the reverse appears to be true.
Consider Figure 1, which shows clusters of four small data
sets where similarity is determined by Euclidean distance. In
each case, Euclidean distance indicates that the two lower
items are the most similar. However, it is obvious that the
two upper time series are most similar. The “correct” distance
measure depends upon the user and problem, and it should be
continuously learned as the user interacts with the system
[15].

In this paper we address both relevance feedback and subjective
measures of similarity. In Section 2 we introduce a new high-level
representation of times series, and in Section 3 we show how this
representation allows relevance feedback retrieval of time series
data. In Section 4 we further show a method for dealing with
subjectivity by modeling the user’s subjective judgment of
similarity.

Michael J. Pazzani
Dept of Info and Computer Science

University of California, Irvine

California 92697 USA
(949) 824-7405

pazzani@ics.uci.edu

Eamonn J. Keogh
Dept of Info and Computer Science

University of California, Irvine

California 92697 USA
(949) 824-7210

eamonn@ics.uci.edu

11
)(XLXRXLXR AAAAW ki

K

i ii −=−∗∑ =

2. REPRESENTING TIME SERIES
Using the original ‘ raw’ data for query by content in time series
databases is computationally expensive (especially for an
interactive system) and fails to abstract key features of the data.
What is needed is a higher-level representation. Several such
representations have been proposed, and we refer the interested
reader to [10] for a detailed discussion of their rival merits.
Piece-wise linear segmentation, which attempts to model the data
as sequences of straight lines, (as in Figure 2) has many
advantages as a representation. Pavlidis and Horowitz [14] point
out that it provides a useful form of data compression and noise
filtering. Shatkay and Zdonik [7] describe a method for fuzzy
queries on linear (and higher order polynomial) segments. Keogh
and Smyth [11] further demonstrate a framework for probabilistic
pattern matching using linear segments and present an algorithm
for segmenting time series.

In previous work on pattern matching using piece-wise linear
segments when comparing two time series to see if they are
similar, all segments are considered to have equal importance.
However, one may wish to assign different weights to different
parts of the time series. As an example, consider the problem of

pattern matching with electrocardiograms. A cardiologist
attempting to diagnose a recent myocardial infarction will pay
close attention to the S-T wave (as shown in Figure 2) and
downplay the importance of the rest of the electrocardiogram. If
we wish an algorithm to reproduce the cardiologist’s ability, we
need a representation that allows us to weight different parts of a
time series differently. In this paper we adopt piece-wise linear
segments to represent the shape of a time series, and augment the
queries with a weight vector that contains the relative importance
of each individual linear segment. The weight vector associated
with the query may be updated by relevance feedback.

2.1 Notation
For clarity we will refer to ‘ raw’ , unprocessed temporal data as
time series and to a piece-wise representation of a time series as a
sequence. We will use the following notation throughout this
paper. A time series, sampled at k points, is represented as an
uppercase letter such as A. The segmented version of A,
containing K linear segments, is denoted as a bold uppercase letter
such as A, where A is a 5-tuple of vectors of length K.

A ≡ { AXL, AXR, AYL, AYR, AW}

The i th segment of sequence A is represented by the line between
(AXL i AYL i) and (AXRi AYRi), and AWi, which represents the
segment's weight. Figure 3 illustrates this notation. After a time
series is segmented to obtain a sequence, we initialize all the
weights to one. Thereafter, if any of the weights are changed, the
weights are renormalized such that the sum of the products of each
weight with the length of its corresponding segment, equals the
length of the entire sequence, so that the following is always true:

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Figure 1: The Euclidean distance measure can produce unintuitive clustering of time series data. Clockwise from the top left,
unintuitive clustering caused by offset translation, amplitude scaling, discontinuities and linear trends. Although the top two time
series appear most similar in all four cases, Euclidean distance indicates that the bottom two are most similar

S
Q

T

R

P

Figure 2: An example of a time series and its piece-
wise linear representation

This renormalization is important because it gives the following
property: the total weight associated with a sequence of a given
length is constant, regardless of how many segments are used to
represent it.

2.2 Comparing Time Series
To retrieve time series, we need a distance (or conversely
similarity) measure to compare the query with segments stored in
the database. We start by adopting a distance measure, DS, that
approximates the Euclidean distance measure on the ‘ raw’ data to
facilitate comparison to earlier work [2],[3],[6]. However, we also
allow for a weight to be associated with each segment in the
query. In Section 4 we further show to generalize this distance
measure to allow for user subjectivity to distortions caused by
offset translation, amplitude scaling, discontinuities and linear
trends.

It is convenient for notational purposes to assume that the
endpoints of the two sequences being compared are aligned in the
X-axis. If this is not the case, the sequences are aligned to split
some segments at the point that corresponds to an endpoint in the
other sequence. Figure 4 illustrates this process. We call each pair
of segments that are aligned in the X-axis a slice, and we note that
each slice has a weight. First, we show how to measure the
weighted Euclidean distance between the pair of segments in a
slice. The overall distance between two sequences is simply the
square root of the summation over all such slices.

The intuition behind the DS approximation of Euclidean
distance is to imagine that the two segments in a slice have been
replaced with raw data. Figure 4.b illustrates this idea, with
phantom lines drawn between each corresponding pair of points.
We need to sum the squares of the lengths of all such lines. Rather
than actually perform a summation, we use an equivalent closed
form equation. Let L be the absolute difference in Y-axis values
between the left endpoints of the two segments. Let R be the
absolute difference in Y-axis values between the right endpoints of
the two segments. Let x be the length of the slice. Let c be
min(L,R) and let ∆ = (max(L,R) – c) /x. The sum of squares
between the two segments in the i th slice is:

The weighted distance between two sequences of length i is:

2.3 Merging Time Series
In this section we define an operation on sequences which we call
‘merge’ . The merge operator combines two sequences and is
analogous to weighted vector addition used in relevance feedback
of text. The basic idea is that the merge operator takes two
sequences as input and returns a single sequence whose shape is a
compromise between the two original sequences, and whose
weight vector reflects how much corresponding segments in each
sequence agree. Repeated application of the merge operator allows
multiple sequences to be combined.

When merging two sequences, one may wish for one of the two
input sequences to contribute more to the final sequence than the
other does. To accommodate this, we associate a term called
‘ influence’ with each of the input sequences. The influence term
associated with a sequence S is a scalar, denoted as SI, and may be
informally considered a ‘mixing weight’ .

The algorithm shown in Table 1 takes the two sequences A and B
with influence terms AI and BI respectively, and outputs a new
sequence C. Figure 5 shows two sequences that have been merged
with various values for the influence terms.

if (AI * BI < 0) then s i gn = - 1
else s i gn = 1
end
mag = min(| AI | , | BI |) / max(| AI | , | BI |)
scal e = max(max(AYL) , (AYR)) - mi n(mi n(AYL) , (AYR))
for i = 1 to K

 CXL
i

= AXL
i

 CXR
i

= AXR
i

 CYL
i

= ((AYL
i

* AI) +(BYL
i

* BI)) / (AI +BI)

 CYR
i

= ((AYR
i

* AI) +(BYR
i

* BI)) / (AI +BI)

 r un = AXR
i

- AXl
i

 r i se = | (AYL
i

- BYL
i
) - (AYR

i
- BYR

i
) |

 di f f = (r i se / r un) * scal e
 CWi = (AWi * BWi) * (1+(si gn * mag) / (1 + di f f))

end

 Table 1: The merge algorithm.

f(t)
(AXLi,AYLi)

t

(AXRi,AYRi)

 AWi

Figure 3: We represent times series by a sequence of straight
segments, together with a sequence of weights (shown as the
histogram) which contain the relative importance of each segment

())12()1(2
6
12 +∆+∆++= xxxccxssi

∑
∈

×=
slicei

ii sliceWssBADS),(

slicei

slicek

f(t)

A

t

a)

Figure 4: a) Two examples of slices. b) A "zoom-in" of a slicei

with lines shown-between the two segments using the same
granularity as the original time series

B

sliceWi sliceWk

b)

slicei

sliceWi

3. QUERY REFINEMENT VIA
RELEVANCE FEEDBACK
Relevance feedback is the reformulation of a search query in
response to feedback provided by the user for the results of
previous versions of the query. It has an extensive history in the
text domain, dating back to Rocchio’s classic paper [18].
Recently, it has seen application to multimedia domains, notably
the MARS project, an image retrieval system [19]. However, no
one has attempted explore time series databases in a relevance
feedback framework, in spite of the fact that relevance feedback
has been shown to significantly improve the querying process in
text databases [16]. In this section we present a simple query
refinement algorithm which utilizes the merge operation defined
in Section 2.

3.1 Formulating a New Query
The query refinement algorithm works in the following manner.
An initial query sequence Q is used to rank all sequences in the
database. This query may be hand drawn by the user or it may be
a sequence or subsequence from the database. The best n
sequences are retrieved and shown to the user. The user assigns
ratings to the retrieved sequences on a scale from –3 to +3. After
the user has evaluated the top n sequences, the query update rule
in table 2 is used to produce a new query Qnew, and the search
process begins again.

Obt ai n t he i ni t i al quer y Q

while user not f i ni shed do

Fi nd t he n sequences t hat mi ni mi ze DS(Q, Si)

 Di spl ay t he sequences t o t he user

Assi gn t he user ’ s r at i ng f or t he i t h sequence t o SI i

Qnew = mer ge([Qol d, Qol dI] , [S1, S1I] , [S2, S2I] , …, [Sn, SnI])

QnewI = Qol dI + S1I + S2I + … + SnI
end

Table 2: An outline of the query refinement algorithm.

Figure 6 shows a sample screen shot of the system.

3.2 Evaluating Query Refinement
To evaluate the effectiveness of the query refinement algorithm to
converge on the intended query, we generated synthetic data of
two similar time series and provided positive feedback for one
type. We constructed 500 “Type A”, and 500 “Type B” time
series, which are defined as follows:

• Type A: Sin(x3) normalized to be between zero and one, plus
Gaussian noise with σ = .1 -2 ≤ x ≤ 2

• Type B: Tan(Sin(x3)) normalized to be between zero and one,
plus Gaussian noise with σ = .1 -2 ≤ x ≤ 2

The time series, which were sampled at 800 points, were
segmented. Figure 7 shows an example of each type. Note that
they are superficially very similar, although Type B has a
somewhat sharper peak and valley. We built an initial query by
averaging all 1,000 time series and segmenting the result.

Figure 6: Screen shots of the relevance feedback graphic user interface. The four areas of each screen are as follows:
Top left : The original query, as drawn by the user.
Right : The best 5 matches to the query.
Center left : The "ranking window", where the user gives feedback on 5 best matches in the form of a number from –3 to 3.
Bottom left : The current query, automatically constructed from the original query and user feedback on retrieved items.
 In this simple example a query was executed to retrieve the 5 best matches as shown in A. The user rated the number 2 matching sequence as a '3',
and all others as '0'. Note that the original query and the number 2 matching sequence differ greatly on the right side. This results in the current query in
B having low weights on the right side and the "softening" of the rightmost peak. This in turn changes the 5 best items retrieved in B

BA

Figure 5: Examples of the merge operator with various influence
terms

1) With two equal influence terms, the shape of the resultant
sequence C is “halfway” between A and B.

2) With B’ s influence term much larger than A’ s, the shape of the
resulting sequence C is much closer to B than A.

3) With a negative influence term for B the shape of the resulting
sequence C looks like A where the differences between A and
B have been exaggerated.

A

B

1) C = merge([A,1],[B,1])

2) C = merge([A,0.2],[B,1])

3) C = merge([A,1],[B,-0.4])

 Twenty-five experimental runs were made. Each run consisted of
the following steps. It was randomly decided whether Type A or
Type B was to be the “ target” shape for that particular
experimental run. The initial query was made, and the best 15
sequences were shown to a user, who then rated them by assigning
ratings that reflected how closely he thought they resembled the
target shape. A refined query was built and the search/rate process
was repeated twice more.

We evaluated the effectiveness of the approach by measuring the
average precision of the top 15 sequences and the precision at the
25, and 50 percent recall points. Precision (P) is defined as the
proportion of the returned sequences which are deemed relevant,
and recall (R) is defined as the proportion of relevant items which
are retrieved from the database. These results are shown in Table
3.

Initial Query Second Query Third Query

P of top 15 .51 .91 .97

P at 25% R .52 .91 .96

P at 50% R .49 .89 .95

Table 3: Results of query refinement experiments

As one might expect, the initial query returns the sequences in
essentially random order. The second query produces remarkable
improvement, and the third query produces near perfect ranking.
This experiment demonstrates the ability of the system to
converge rapidly on an accurate refined query.

4. HANDLING SUBJECTIVITY OF
SIMILARITY
The representation of time series presented above provides a
flexible query language allowing arbitrary shapes and weights.
However, it is still possible that a query using this representation
could fail to retrieve an item that the user would have found
relevant. Consider the problem of offset translation, illustrated in
Figure 8. Two similar (or even identical) shapes can have an
arbitrarily large dissimilarity because they are separated in the Y-
axis. As a familiar real-world example, consider two stocks,
whose values fluctuate around $100 and $20 respectively. It is
possible that the stock movements are very similar but are
separated by a constant amount. Agrawal et al [2] and Das et al [3]
have noted this problem before. Their solution is to normalize the
two sequences being compared such that they have the same mean.
However this approach significantly reduces the discriminating
power of the query language. For example suppose a user wishes
to know whether this database contain a plateau at $40. Using the

retrieval method proposed in Section 3 of the paper, the user could
simply draw a straight line of the appropriate length at the $40
level, and use this as a query. Using the “normalizing” query
systems of Agrawal et al or Das et al, however, will result in all
plateaus being returned, regardless of their mean value (i.e
plateaus at $1 or $120).

Whether a query should be sensitive to offset translation or not is
clearly domain dependent. In stock market analysis, chartists
typically wish to be insensitive to it. However in a database which
contains patients temperatures, we definitely need to be able to
differentiate between a patient whose temperature hovers around
98 degrees and a patient whose temperature hovers around 103
degrees. The stock market and medical database examples
presented above represent the two extremes of
sensitivity/insensitivity to offset translation. However it is
generally the case that a user is willing to trade off some fidelity
to shape for fidelity to offset. Naturally the amount trade-off will
depend on the user and their information goals and may change
during the process of interacting with the dataset. In this section,
we show how to deal with this problem by introducing a user
profile that encodes the user’s subjective tolerance to offset
translation and other global distortions of sequences.

4.1 Global Distortions
In this section we introduce four global distortions which can
occur in time series databases and show how we measure them.
Note that in every case the distortion in the database is relative to
a particular query. The term distortion is not meant to imply that
the data is somehow corrupt. It simply means that some simple
transformation of candidate sequence would greatly reduce the
Euclidean distance between the query and the candidate sequence.

Offset translation was mentioned in the previous section. The
amount of offset translation between a query and another sequence
is denoted by the scalar O and is calculated as follows:

Tan(Sin(x3)Sin(x3)

C)

B)

A)

Figure 7: Synthetic data created for relevance feedback
experiment. A) The original time series. B) The original time series
with noise added. C) The segmented version of B

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Of f set T r ansl at i on

A mpl i t ude Scal i ng

L i near dr i f t

D i scont i nui t i es

Figure 8: The four global distortions defined and discussed
in Section 4.1

()() 2/)()(1),(SmeanQmeanSQOT −+≡

 Where mean(S) is simply the mean Y value of the sequence S.
Note that 0 ≤ O ≤ 1. Values close to ½ indicate that little or no
translation occurred. Values less than ½ indicate that the candidate
sequence S was shifted down to achieve a better match and values
greater than ½ indicate that the candidate sequence was shifted up
to achieve a better fit.

Amplitude scaling, where two sequences are alike, but one has
been ‘stretched’ or ‘compressed’ in the y-axis, can be dealt with
similarly. It simply requires normalizing the sequences before
applying the distance operator. Agrawal et al. [2] describe how to
do this with raw time series. Normalizing with sequences is
similar, but can be accomplished k/K times faster. The amount of
amplitude scaling is denoted by the scalar A and is calculated as
follows:

Where std(S) is simply the standard deviation of the sequence S.
Note that 0 ≤ A ≤ 1. Values close to ½ indicate that little or no
rescaling occurred. Values less than ½ indicate that the candidate
sequence S was ‘compressed’ to achieve a better match and values
greater than ½ indicate that the candidate sequence was ‘stretched’
to achieve a better fit.

Linear drift occurs naturally in many domains. As an example,
consider two time series, which measure the absolute sales of ice
cream in two cities with similar climates and populations. We
would expect the two time series to be very similar, but if one
city’s population remains constant while the other experiences
steady growth, we will see linear drift. The amount of linear
detrending necessary to improve the fit between is denoted by the
scalar L and is calculated as follows:

Where max possible slope is the greatest possible slope difference,
easily calculated since we know the ∆x, the length of the query,
and ∆y is one. Note that 0 ≤ L ≤ 1. Values close to ½ indicate that
little or no detrending occurred. Values less than ½ indicate that
the candidate sequence S had some trend removed to achieve a
better match and values greater than ½ indicate that the candidate
sequence had some trend added to achieve a better fit.

Finally, some datasets contain discontinuities. These are typically
sensor calibration artifacts (caused by power spikes for example),
but may have other causes. We introduce the following definition
to facilitate discussion:

Definition 1 (Relative Discontinuity):
A sequence S is said to be relatively discontinuous with respect to
a query Q, if translating a single subsection of S in the y-axis
results in a new sequence S’, with DS(Q,S) � DS(Q,S’). The
amount of relative discontinuity is denoted by the scalar R, and is
calculated as follows:

Note that 0 ≤ R ≤ 1. A value for R close to one indicates the
absence of a discontinuity. Smaller values indicate that a relative
discontinuity was detected.

4.2 Representing the User Profile
Given that we can measure the distance between two time series
and we can measure the various global distortions discussed
above, we now have a framework for measuring the subjective
distance between two time series Q and S. The idea is that we
shift, rescale, detrend and remove relative discontinuities from S
to produce a new sequence S’. We then measure the distance
between Q and the transformed sequence S’. The subjective
distance is defined as:

Where TransformationPenalty(S,S’) is the “cost” of converting S
into S’. This cost depends on the user’s profile, their subjective
judgement of the desirability of the four distortions in a particular
domain.

We need to represent the user’s subjective preferences. We do this
by learning the parameters of a “preference” distribution for each
distortion. These distributions are defined only in the range of
[0,1], which is also the range for all the global distortions. The
height of the distribution represents the relative desirability of a
particular amount of distortion. For example, if FOT(x) is the
distribution function for the offset translation, and a sequence S
had its offset translation relative to Q measured as O = (Q,S), then
the penalty term for offset translation is fOT(O) / argmax(fOT(x)).

For simplicity we make the assumption that each of the global
distortions are independent of each other. Given this assumption
we can define the TransformationPenalty as:

We chose the beta function to represent each of the preference
distributions because it provides a rich class of distributions that
can closely approximate many other functions, including the
uniform, exponential, Gaussian, log-normal and linear
distributions. Figure 10 shows a few of the different shapes that
the beta distribution can take on. The shape of the beta
distribution is determined by two parameters r and s. It is defined
in the range of [0,1] which is also the range of all the preference
distributions.

4.3 Learning the User Profile
We now show that it is possible to infer the user’s subjectivity
preferences from the user’s estimates of the similarity between
sequences by fitting a beta distribution to data [4]. However we
have two addition questions must be addressed:

î



−
≤

≡
2/))(/)(2(

2/))(/)(()()(
),(

QstdSstdelse

SstdQstdSstdQstdif
SQAS

2
)()(

1),(










 −+≡
slopexpossiblema

SslopeQslope
SQLD

),(/)’,(),(SQDSSQDSSQRD ≡

Figure 9: How the relative discontinuity term R is calculated. I:
The distance DS(Q,S) is calculated. II: A single subsection of S is
translated such that DS(Q,S’) is minimized. RD(Q,S) is defined as
DS(Q,S’) /DS(Q,S)

S

Q
I II

S’

)’,()’,(),(_ SSytionPenaltTransformaSQDSSQdissub ×≡

≡)’,(SSytionPenaltTransforma

))(max(arg

)(

))(max(arg

)(

))(max(arg

)(

))(max(arg

)(

xf

Rf

xf

Lf

xf

Af

xf

Of

RD

RD

LT

LT

AS

AS

OT

OT ×××

1) How should we initialize the distributions for the first search?

2) When we get feedback for an item, how do we know how much
of it is attributable to the global distortions as opposed to the
actual shape of the item?

The first of these problems we deal with in the following manner.
The first time the user uses the system they are draw a query
shape. Before a search of database occurs, the system produces
multiple copies of the query and adds various amounts of the four
global distortions to them. The user is asked to rate these and the
ratings are used to learn the initial user profile.

The second of these problems is also easily dealt with. The
solution we use is to show the user both the original sequence S
and the transformed sequence S’ and ask them to rate them
independently. We can then easily decide the appropriate
corrections to the actual shape of the item (using the query update
rule in Table 2) and the user profile. The following illustrates how
the parameters for the offset translation preference distribution are
learned. The other preference distributions are learned in a similar
fashion.

For each of the n sequences the search algorithm returns we do
the following. We measure the amount of offset translation Oi.
Next we present the user both the original sequence S and the
transformed sequence S’ and obtain ratings for each. The ratio of
these two ratings are use as a weights to estimate the weighted
mean and weighted variance of the distribution of all n offsets.
We can then estimate the parameters of the beta distribution as:

Table 4 shows an outline of the new search algorithm, which we
call Subjective-Distance Retrieval (SDR):

I ni t i al i ze t he user pr of i l e and obt ai n t he i ni t i al
quer y Q.

while user not f i ni shed do

 for each candi dat e sequence S i n t he dat abase.

 Cal cul at e O = OT(Q, S) , r emove of f set

 Cal cul at e A = AS(Q, S) , r emove ampl i t ude scal i ng

 Cal cul at e L = LT(Q, S) , r emove l i near t r end

 Cal cul at e R = RD(Q, S) , r emove r el at i ve di scont i nui t y

 sub_dis(Q, S) = DS(Q, S’) × t r ansf or mat i onPenal t y(S, S’)

 end

 Di spl ay t he n best mat ches, and gat her f eedback.

 Updat e t he quer i es shape and wei ght vect or .

 Updat e t he user pr of i l e.

end

Table 4: Outline of the Subjective-Distance Retrieval algorithm.

4.4 Using Subjective Distance Measures
To illustrate the utility of using user profiles, we did the following
experiment. Using a database consisting of RR intervals obtained
from Holter ECG tapes [20], we built a query and performed an
initial search using Euclidean distance. A user examined and rated
the first 10 sequences returned, and repeated the search in two
different ways.

1) Using the query update rule discussed in section 3, without

using the subjective distance measures.

2) Using the SDR algorithm, incorporating subjective distance

measures.

The four top ranked sequences from Euclidean distance, relevance
feedback query refinement without the subjective distance
measure and relevance feedback query refinement with the
subjective distance measure are show in Figure 11. The four
sequences shown in Figure 11.A minimize the Euclidean distance
to the initial query. The four sequences shown in 11.B minimize
the weighted distance to the refined query, and the four sequences
in Figure 11.C, when transformed by the user subjective distance
measure, are most similar to the original query. Only the results
retrieved with the subjective distance measure allow for similarity
of shape while tolerating differences in offset, amplitude, etc

5. RELATED WORK
There has been no work on relevance feedback for time series.
However, in the text domain there is an active and prolific
research community. Salton and Buckley [16] provide an
excellent overview and comparison of the various approaches.
Picard [15] has long stressed the need to model subjectivity in
information retrieval and has implemented image retrieval called
FourEyes that attempts to learn the (subjective) weighting of
features which are best suited to an image retrieval [12]. We have
shown how both of these ideas may be applied to retrieval of time
series data.

6. CONCLUSION
We introduced an enhanced representation of time series and
demonstrated its utility for relevance feedback. We further
demonstrated a method for dealing with user subjectivity by
encoding a user profile.

Possible areas for future research include incorporation of other
global distortions, especially time axis distortions, and building an
indexing system to speed up the interaction times.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 10: We use the beta distribution to model the user’s
preferences because it can approximate a wide variety of
distributions over the range [0,1], which is also the range of all
four global distortions





 −−−=



 −−= 1

ˆ

)ˆ1(ˆ
)ˆ1(ˆ1

ˆ

)ˆ1(ˆ
ˆˆ

22 σ
µµµ

σ
µµµ sr

7. REFERENCES
[1] Agrawal, R., Faloutsos, C., & Swami, A.(1993). Efficient

similarity search in sequence databases. Proc. of the 4th
Conference on Foundations of Data Organization and
Algorithms, Chicago, October.

[2] Agrawal, R., Lin, K. I., Sawhney, H. S., & Shim, K.(1995).
Fast similarity search in the presence of noise, scaling, and
translation in times-series databases. In VLDB, September.

[3] Das, G., Lin, K., Mannila, H., Renganathan, G. & Smyth, P.
(1998) Rule discovery from time series. KDD. pp. 16-22.

[4] Derman, C., Gleser, L. G. & Olkin, I (1973). A guide to
probability, theory and application. Holt, Rinehart and
Winston, Inc. New York. ISBN 0-03-0-78885-4.

[5] Edwards, R . D. (1997) Technical analysis of stock trends.
MaGraw-Hill ISBN: 0814403735.

[6] Faloutsos, C., Ranganathan, M., & Manolopoulos, Y.
(1994). Fast subsequence matching in time-series databases.
SIGMOD - Proceedings of Annual Conference, Minneapolis,
May.

[7] Hagit, S., & Zdonik, S. (1996). Approximate queries and
representations for large data sequences. Proc. 12th IEEE
International Conference on Data Engineering. pp 546-553,
New Orleans, Louisiana, February.

[8] Jenkins, D. & Gerred, S. (1997). ECGs by example.
Churchill Livingstone ISBN 0 443 056978.

[9] Keogh, E. (1997). Fast similarity search in the presence of
longitudinal scaling in time series databases. Proceedings of
the 9th International Conference on Tools with Artificial
Intelligence. pp 578-584. IEEE Press.

[10] Keogh, E. & Pazzani, M. (1998) Proceedings of the 4th
International Conference of Knowledge Discovery and Data
Mining. pp 239-243, AAAI Press.

[11] Keogh, E. & Smyth, P. (1997). A probabilistic approach to
fast pattern matching in time series databases. Proceedings
of the 3rd International Conference of Knowledge Discovery
and Data Mining. pp 24-20, AAAI Press.

[12] Minka., T., P. & Picard., R., W. (1997) Pattern
Recognition, Interactive Learning using a Society of Models,
Vol. 30, pp. 565, also MIT Media Lab Perceptual Computing
TR #349

[13] Ng, M.K., Huang, Z. (1997). Temporal data mining with a
case study as astronomical data analysis. Lecture Notes in
Computer Sciences. Springer. pp 2-18.

[14] Pavlidis, T., Horowitz, S., (1974). Segmentation of plane
curves. IEEE Transactions on Computers, Vol. C-23, No 8,
August.

[15] Picard R.W (1995). Computer learning of subjectivity. ACM
Computing Surveys, Vol. 27, No. 4, pp. 621-623, Dec.

[16] Salton, G., & Buckley, C. (1990). Improving retrieval
performance by relevance feedback. JASIS 41. pp. 288-297.

[17] Skinner, K. H. (1997). Temporal data mining techniques for
classification of time series data. Bachelors Thesis. Dept of
Comp Sci, Australian National University.

[18] Rocchio, J. J., Jr.(1971).Relevance feedback in information
retrieval: The Smart System - Experiments in Automatic
Document Processing, ed. Salton, G., Prentice-Hall Inc., pp.
337-354.

[19] Rui,Y., Huang, T .S., Mehrotra, S. & Ortega, M. (1997).
Automatic matching tool selection using relevance feedback
in MARS. Proceedings of 2nd Int. Conf. On Visual
Information Systems.

[20] Zebrowski, J,J. (1997). http://www.mpipks-
resden.mpg.de/~ntpta/Data/Zebrowski-I

Query

0 1 0 1 0 1 0 1 0

A

B

C

1 2 3 4

Figure 11: To illustrate the utility using subjective distance measures we did the following. We built a query and preformed
an initial search using Euclidean distance (A). We examined and rated the first 10 sequences returned, and repeated the
search in two different ways. Using the query update rule discussed in section 3, without using the subjective distance
measures (B). Using the SDR algorithm, incorporating subjective distance measures (C)

