
An Online Algorithm for Segmenting Time Series

Eamonn Keogh Selina Chu David Hart Michael Pazzani
Department of Information and Computer Science

University of California, Irvine, California 92697 USA
{eamonn, selina, dhart, pazzani}@ics.uci.edu

Abstract

In recent years, there has been an explosion of interest
in mining time series databases. As with most computer
science problems, representation of the data is the key to
efficient and effective solutions. One of the most
commonly used representations is piecewise linear
approximation. This representation has been used by
various researchers to support clustering, classification,
indexing and association rule mining of time series data.
A variety of algorithms have been proposed to obtain this
representation, with several algorithms having been
independently rediscovered several times. In this paper,
we undertake the first extensive review and empirical
comparison of all proposed techniques. We show that all
these algorithms have fatal flaws from a data mining
perspective. We introduce a novel algorithm that we
empirically show to be superior to all others in the
literature.

1. Introduction

In recent years, there has been an explosion of interest
in mining time series databases. As with most computer
science problems, representation of the data is the key to
efficient and effective solutions. Several high level
representations of time series have been proposed,
including Fourier Transforms [1,13], Wavelets [4],
Symbolic Mappings [2, 5, 24] and Piecewise Linear
Representation (PLR). In this work, we confine our
attention to PLR, perhaps the most frequently used
representation [8, 10, 12, 14, 15, 16, 17, 18, 20, 21, 22,
25, 27, 28, 30, 31].

Intuitively Piecewise Linear Representation refers to
the approximation of a time series T, of length n, with K
straight lines. Figure 1 contains two examples. Because K
is typically much smaller that n, this representation makes
the storage, transmission and computation of the data
more efficient. Specifically, in the context of data mining,
the piecewise linear representation has been used to:
• Support fast exact similarly search [13].
• Support novel distance measures for time series,

including “fuzzy queries” [27, 28], weighted queries
[15], multiresolution queries [31, 18], dynamic time
warping [22] and relevance feedback [14].

• Support concurrent mining of text and time series [17].

• Support novel clustering and classification algorithms
[15].

• Support change point detection [29, 8].
Surprisingly, in spite of the ubiquity of this

representation, with the exception of [27], there has been
little attempt to understand and compare the algorithms
that produce it. Indeed, there does not even appear to be a
consensus on what to call such an algorithm. For clarity,
we will refer to these types of algorithm, which input a
time series and return a piecewise linear representation, as
segmentation algorithms.

The segmentation problem can be framed in several
ways.
• Given a time series T, produce the best representation

using only K segments.
• Given a time series T, produce the best representation

such that the maximum error for any segment does
not exceed some user-specified threshold,
max_error.

• Given a time series T, produce the best representation
such that the combined error of all segments is less
than some user-specified threshold,
total_max_error.

As we shall see in later sections, not all algorithms can
support all these specifications.

Segmentation algorithms can also be classified as batch
or online. This is an important distinction because many
data mining problems are inherently dynamic [30, 12].

Data mining researchers, who needed to produce a
piecewise linear approximation, have typically either
independently rediscovered an algorithm or used an
approach suggested in related literature. For example,
from the fields of cartography or computer graphics [6, 9,
26].

Figure 1. Two time series and their piecewise linear
representation. A) Space Shuttle Telemetry. B)
Electrocardiogram (ECG)

In this paper, we review the three major segmentation
approaches in the literature and provide an extensive
empirical evaluation on a very heterogeneous collection of

A) B)

datasets from finance, medicine, manufacturing and
science. The major result of these experiments is that only
online algorithm in the literature produces very poor
approximations of the data, and that the only algorithm
that consistently produces high quality results and scales
linearly in the size of the data is a batch algorithm. These
results motivated us to introduce a new online algorithm
that scales linearly in the size of the data set, is online, and
produces high quality approximations.

The rest of the paper is organized as follows. In Section
2, we provide an extensive review of the algorithms in the
literature. We explain the basic approaches, and the
various modifications and extensions by data miners. In
Section 3, we provide a detailed empirical comparison of
all the algorithms. We will show that the most popular
algorithms used by data miners can in fact produce very
poor approximations of the data. The results will be used
to motivate the need for a new algorithm that we will
introduce and validate in Section 4. Section 5 offers
conclusions and directions for future work.

2. Background and Related Work

In this section, we describe the three major approaches
to time series segmentation in detail. Almost all the
algorithms have 2 and 3 dimensional analogues, which
ironically seem to be better understood. A discussion of
the higher dimensional cases is beyond the scope of this
paper. We refer the interested reader to [9], which
contains an excellent survey.

Although appearing under different names and with
slightly different implementation details, most time series
segmentation algorithms can be grouped into one of the
following three categories.
• Sliding Windows: A segment is grown until it

exceeds some error bound. The process repeats with
the next data point not included in the newly
approximated segment.

• Top-Down: The time series is recursively partitioned
until some stopping criteria is met.

• Bottom-Up: Starting from the finest possible
approximation, segments are merged until some
stopping criteria is met.

Table 1. The notation used in this paper
T A time series in the form t1,t2,…,tn

T[a:b] The subsection of T from a to b,
ta,ta+1,…,tb

Seg_TS A piecewise linear approximation of a
time series of length n with K
segments. Individual segments can be
addressed with Seg_TS(i).

create_segment(T) A function which takes in a time series
and returns a linear segment
approximation of it.

calculate_error(T) A function which takes in a time series
and returns the approximation error of
the linear segment approximation of it.

Given that we are going to approximate a time series
with straight lines, there are at least two ways we can find
the approximating line.
• Linear Interpolation: Here the approximating line

for the subsequence T[a:b] is simply the line
connecting ta and tb. This can be obtained in constant
time.

• Linear Regression: Here the approximating line for
the subsequence T[a:b] is taken to be the best fitting
line in the least squares sense [27]. This can be
obtained in time linear in the length of segment.

The two techniques are illustrated in Figure 2. Linear
interpolation tends to closely align the endpoint of
consecutive segments, giving the piecewise approximation
a “smooth” look. In contrast, piecewise linear regression
can produce a very disjointed look on some datasets. The
aesthetic superiority of linear interpolation, together with
its low computational complexity has made it the
technique of choice in computer graphic applications [9].
However, the quality of the approximating line, in terms
of Euclidean distance, is generally inferior to the
regression approach.

Figure 2. Two 10-segment approximations of
electrocardiogram data. The approximation created using
linear interpolation has a smooth aesthetically appealing
appearance because all the endpoints of the segments
are aligned. Linear regression, in contrast, produces a
slightly disjointed appearance but a tighter approximation
in terms of residual error

All segmentation algorithms also need some method to
evaluate the quality of fit for a potential segment. A
measure commonly used in conjunction with linear
regression is the sum of squares, or the residual error. This
is calculated by taking all the vertical differences between
the best-fit line and the actual data points, squaring them
and then summing them together. Another commonly used
measure of goodness of fit is the distance between the best
fit line and the data point furthest away in the vertical
direction (i.e. the L∞ norm between the line and the data).
As before, we have kept our descriptions of the algorithms
general enough to encompass any error measure. In
particular, the pseudocode function
calculate_error(T)can be imagined as using any
sum of squares, furthest point, or any other measure.

2.1 The sliding window algorithm.

The Sliding Window algorithm works by anchoring the
left point of a potential segment at the first data point of a
time series, then attempting to approximate the data to the
right with increasing longer segments. At some point i, the
error for the potential segment is greater than the user-
specified threshold, so the subsequence from the anchor to
i-1 is transformed into a segment. The anchor is moved to

Linear
Interpolation

Linear
Regression

location i, and the process repeats until the entire time
series has been transformed into a piecewise linear
approximation. The pseudocode for the algorithm is
shown in Table 2.

Table 2. The generic Sliding Window algorithm
Algorithm Seg_TS = Sliding_Window(T , max_error)

anchor = 1;

while not finished segmenting time series

i = 2;

while calculate_error(T[anchor: anchor + i]) < max_error

i = i + 1;

end;

Seg_TS =concat(Seg_TS,create_segment(T[anchor:anchor+(i-1)]);

anchor = anchor + i;

end;

The Sliding Window algorithm is attractive because of
its great simplicity, intuitiveness and particularly the fact
that it is an online algorithm. Several variations and
optimizations of the basic algorithm have been proposed.
Koski et al. noted that on ECG data it is possible to speed
up the algorithm by incrementing the variable i by “leaps
of length k” instead of 1. For k = 15 (at 400Hz), the
algorithm is 15 times faster with little effect on the output
[12].

Depending on the error measure used, there may be
other optimizations possible. Vullings et al. noted that
since the residual error is monotonically non-decreasing
with the addition of more data points, one does not have to
test every value of i from 2 to the final chosen value [30].
They suggest initially setting i to s, where s is the mean
length of the previous segments. If the guess was
pessimistic (the measured error is still less than
max_error) then the algorithm continues to increment i
as in the classic algorithm. Otherwise they begin to
decrement i until the measured error is less than
max_error. This optimization can greatly speed up the
algorithm if the mean length of segments is large in
relation to the standard deviation of their length. The
monotonically non-decreasing property of residual error
also allows binary search for the length of the segment.
Surprisingly, no one we are aware of has suggested this.

The Sliding Window algorithm can give pathologically
poor results under some circumstances. Most researchers
have not reported this [25, 31], perhaps because they
tested the algorithm on stock market data, and its relative
performance is best on noisy data. Shatkay (1995), in
contrast, does notice the problem and gives elegant
examples and explanations [27]. They consider three
variants of the basic algorithm, each designed to be robust
to a certain case, but they underline the difficulty of
producing a single variant of the algorithm which is robust
to arbitrary data sources.

Park et al. (2001) suggested modifying the algorithm to
create “monotonically changing” segments [21]. That is,
all segments consist of data points of the form of t1 ≤ t2≤
… ≤ tn or t1 ≥ t2≥ … ≥ tn. This modification worked well
on the smooth synthetic dataset it was demonstrated on.

But on real world datasets with any amount of noise, the
approximation is greatly overfragmented.

Variations on the Sliding Window algorithm are
particularly popular with the medical community (where it
is known as FAN or SAPA), since patient monitoring is
inherently an online task [11, 12, 19, 30].

2.2 The top-down algorithm.

The Top-Down algorithm works by considering every
possible partitioning of the times series and splitting it at
the best location. Both subsections are then tested to see if
their approximation error is below some user-specified
threshold. If not, the algorithm recursively continues to
split the subsequences until all the segments have
approximation errors below the threshold. The
pseudocode for the algorithm is shown in Table 3.

Table 3. The generic Top-Down algorithm
Algorithm Seg_TS = Top_Down(T , max_error)

best_so_far = inf;

for i = 2 to length(T)- 2 // Find best place to divide.

improvement_in_approximation = improvement_splitting_here(T,i);

if improvement_in_approximation < best_so_far

breakpoint = i;

best_so_far = improvement_in_approximation;

end;

end;

 // Recursively split the left segment if necessary.

if calculate_error(T[1:breakpoint]) > max_error

Seg_TS = Top_Down(T[1: breakpoint]);

end;

 // Recursively split the right segment if necessary.

if calculate_error(T[breakpoint + 1:length(T)]) > max_error

Seg_TS = Top_Down(T[breakpoint + 1: length(T)]);

end;

Variations on the Top-Down algorithm (including the
2-dimensional case) were independently introduced in
several fields in the early 1970’s. In cartography, it is
known as the Douglas-Peucker algorithm [6]; in image
processing, it is known as Ramers algorithm [26]. Most
researchers in the machine learning/data mining
community are introduced to the algorithm in the classic
textbook by Duda and Harts, which calls it “Iterative End-
Points Fits”[7].

In the data mining community, the algorithm has been
used by [18] to support a framework for mining sequence
databases at multiple abstraction levels. Shatkay and
Zdonik use it (after considering alternatives such as
Sliding Windows) to support approximate queries in time
series databases [28].

Park et al. introduced a modification where they first
perform a scan over the entire dataset marking every peak
and valley [22]. These extreme points used to create an
initial segmentation, and the Top-Down algorithm is
applied to each of the segments (in case the error on an
individual segment was still too high). They then use the
segmentation to support a special case of dynamic time
warping. This modification worked well on the smooth
synthetic dataset it was demonstrated on. But on real

world data sets with any amount of noise, the
approximation is greatly overfragmented.

Lavrenko et al. uses the Top-Down algorithm to
support the concurrent mining of text and time series [17].
They attempt to discover the influence of news stories on
financial markets. Their algorithm contains some
interesting modifications including a novel stopping
criteria based on the t-test.

Finally Smyth and Ge use the algorithm to produce a
representation which can support a Hidden Markov Model
approach to both change point detection and pattern
matching [8].

2.3 The bottom-up algorithm.

The Bottom-Up algorithm is the natural complement to
the Top-Down algorithm. The algorithm begins by
creating the finest possible approximation of the time
series, so that n/2 segments are used to approximate the n-
length time series. Next, the cost of merging each pair of
adjacent segments is calculated, and the algorithm begins
to iteratively merge the lowest cost pair until a stopping
criteria is met. When the pair of adjacent segments i and
i+1 are merged, the algorithm needs to perform some
bookkeeping. First, the cost of merging the new segment
with its right neighbor must be calculated. In addition, the
cost of merging the i–1 segments with its new larger
neighbor must be recalculated. The pseudocode for the
algorithm is shown in Table 4.

 Table 4. The generic Bottom-Up algorithm

Algorithm Seg_TS = Bottom_Up(T , max_error)

for i = 1 : 2 : length(T) // Create initial fine approximation.

Seg_TS = concat(Seg_TS, create_segment(T[i: i + 1]));

end;

for i = 1 : length(Seg_TS) – 1 // Find the cost of merging...

 // ... each pair of segments.

merge_cost(i)=calculate_error([merge(Seg_TS(i), Seg_TS(i+1))]);

end;

while min(merge_cost) < max_error // While not finished.

i = min(merge_cost); // Find cheapest pair to merge.

Seg_TS(i) = merge(Seg_TS(i), Seg_TS(i+1))); // Merge them.

delete(Seg_TS(i+1)); // Update records.

merge_cost(i)= calculate_error(merge(Seg_TS(i), Seg_TS(i+1)));

merge_cost(i-1)= calculate_error(merge(Seg_TS(i-1), Seg_TS(i)));
end;

Two and three-dimensional analogues of this algorithm
are common in the field of computer graphics where they
are called decimation methods [9]. In data mining, the
algorithm has been used extensively by two of the current
authors to support a variety of time series data mining
tasks [14, 15, 16]. In medicine, the algorithm was used by
Hunter and McIntosh to provide the high level
representation for their medical pattern matching system
[10].

The properties of the various algorithms are
summarized in Table 5.

Table 5. A feature summary for the 3 major
algorithms.1KEY: E → Maximum error for a given
segment, ME → Maximum error for a given segment for
entire time series, K → Number of segments. 2Possibly
with modifications and/or extensions

Algorithm User can specify1 Online Complexity Used by2

Top-Down E, ME, K No O(n2K) 6, 7, 8, 18, 22, 17
Bottom-Up E, ME, K No O(Ln) 10, 14, 15 , 16
Sliding
Window

E Yes O(Ln) 11, 12, 19, 25, 30,
31, 27

3. Empirical comparison of the major
segmentation algorithms

In this section, we will provide an extensive empirical
comparison of the three major algorithms. It is possible to
create artificial datasets that allow one of the algorithms to
achieve zero error (by any measure), but forces the other
two approaches to produce arbitrarily poor
approximations. In contrast, testing on purely random data
forces the all algorithms to produce essentially the same
results. To overcome the potential for biased results, we
tested the algorithms on a very diverse collection of
datasets. These datasets where chosen to represent the
extremes along the following dimensions, stationary/non-
stationary, noisy/smooth, cyclical/non-cyclical,
symmetric/ asymmetric, etc. In addition, the data sets
represent the diverse areas in which data miners apply
their algorithms, including finance, medicine,
manufacturing and science. Figure 3 illustrates the 10
datasets used in the experiments.

Figure 3. The ten datasets used in the experiments. 1)
Radio Waves. 2) Exchange Rates. 3) Tickwise II. 4)
Tickwise I. 5) Water Level. 6) Manufacturing. 7) ECG. 8)
Noisy Sine Cubed. 9) Sine Cube. 10) Space Shuttle

3.1 Experimental methodology

For simplicity and brevity, we only include the linear
regression versions of the algorithms in our study. Since
linear regression minimizes the sum of squares error, it
also minimizes the Euclidean distance (the Euclidean
distance is just the square root of the sum of squares).

1

2

3

4

5

6

7

8

9

10

Euclidean distance, or some measure derived from it, is by
far the most common metric used in data mining of time
series [1, 2, 4, 5, 13, 14, 15, 16, 25, 31]. The linear
interpolation versions of the algorithms, by definition, will
always have a greater sum of squares error.

The performance of the algorithms depends on the
value of max_error. As max_error goes to zero all
the algorithms have the same performance, since they
would produce n/2 segments with no error. At the
opposite end, as max_error becomes very large, the
algorithms once again will all have the same performance,
since they all simply approximate T with a single best-fit
line. Instead, we must test the relative performance for
some reasonable value of max_error, a value that
achieves a good trade off between compression and
fidelity. Because this “reasonable value” is subjective and
dependent on the data mining application and the data
itself, we did the following. We chose what we considered
a “reasonable value” of max_error for each dataset,
then we bracketed it with 6 values separated by powers of
two. The lowest of these values tends to produce an over-
fragmented approximation, and the highest tends to
produce a very coarse approximation. So in general, the
performance in the mid-range of the 6 values should be
consider most important. Figure 4 illustrates this idea.

Since we are only interested in the relative
performance of the algorithms, for each setting of
max_error on each data set, we normalized the
performance of the 3 algorithms by dividing by the error
of the worst performing approach.

Figure 4. We are most interested in comparing the segmentation
algorithms at the setting of the user-defined threshold max_error
that produces an intuitively correct level of approximation. Since
this setting is subjective we chose a value for E, such that
max_error = E*2i (i = 1 to 6), brackets the range of reasonable
approximations

3.2 Experimental results
The experimental results are summarized in Figure 5.

The most obvious result is the generally poor quality of
the Sliding Windows algorithm. With a few exceptions, it
is the worse performing algorithm, usually by a large
amount.

 Top-Down does occasionally beat Bottom-Up, but
only by small amount. On the other hand Bottom-Up often
significantly out performs Top-Down, especially on the
ECG, Manufacturing and Water Level data sets.

Figure 5. A comparison of the three major times series segmentation algorithms, on ten diverse datasets

S p a c e S h u t t l e

E C G

T i c k w i s e 1

R a d io W a v e s

S in e c u b e d

M a n u f a c t u r i n g

T i c k w is e 2

N o i s y S i n e c u b e d

W a t e r L e v e l

E x c h a n g e R a t e

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 2 3 4 5 6
0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 2 3 4 5 6

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 2 3 4 5 6

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 2 3 4 5 6

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 2 3 4 5 6

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 2 3 4 5 6

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 2 3 4 5 6

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 2 3 4 5 6
0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 2 3 4 5 6
0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 2 3 4 5 6

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 2 3 4 5 6

B o t t o m
U p

S l id in g
W in d o w s

T o p
D o w n

P o o r A p p r o x im a t io n

G o o d A p p r o x i m a t i o n

E * 2
1

E * 2
2

E * 2
3

E * 2
4

E * 2
5

E * 2
6

Too fine an
approximation

Too coarse an
approximation

“Correct”
approximation

max_error =

E * 2
1

max_error =
E * 2

2

max_error =

E * 2
3

max_error =

E * 2
4

max_error =

E * 2
5

max_error =

E * 2
6

4. A new approach

Given the noted shortcomings of the major
segmentation algorithms, we investigated alternative
techniques. The main problem with the Sliding Windows
algorithm is its inability to look ahead, lacking the global
view of its offline (batch) counterparts. The Bottom-Up
and the Top-Down approaches produce better results, but
are offline and require the scanning of the entire data set.
This is impractical or may even be unfeasible in a data-
mining context, where the data are in the order of
terabytes or arrive in continuous streams. We therefore
introduce a novel approach in which we capture the online
nature of Sliding Windows and yet retain the superiority
of Bottom-Up. We call our new algorithm SWAB
(Sliding Window and Bottom-up).

4.1 The SWAB segmentation algorithm
The SWAB algorithm keeps a small buffer. The

buffer size should initially be chosen so that there is
enough data to create about 5 or 6 segments. Bottom-
Up is applied to the data in the buffer and the leftmost
segment is reported. The data corresponding to the
reported segment is removed from the buffer and more
datapoints are read in. The number of datapoints read in
depends on the structure of the incoming data. This
process is performed by the Best_Line function,
which is basically just classic Sliding Windows. These
points are incorporated into the buffer and Bottom-Up is
applied again. This process of applying Bottom-Up to
the buffer, reporting the leftmost segment, and reading
in the next “best fit” subsequence is repeated as long as
data arrives (potentially forever).

The intuition behind the algorithm is this. The
Best_Line function finds data corresponding to a
single segment using the (relatively poor) Sliding
Windows and gives it to the buffer. As the data moves
through the buffer the (relatively good) Bottom-Up
algorithm is given a chance to refine the segmentation,
because it has a “semi-global” view of the data. By the
time the data is ejected from the buffer, the segmentation
breakpoints are usually the same as the ones the batch
version of Bottom-Up would have chosen. The
pseudocode for the algorithm is shown in Table 6.

Using the buffer allows us to gain a “semi-global” view
of the data set for Bottom-Up. However, it important to
impose upper and lower bounds on the size of the
window. A buffer that is allowed to grow arbitrarily large
will revert our algorithm to pure Bottom-Up, but a small
buffer will deteriorate it to Sliding Windows, allowing
excessive fragmentation may occur. In our algorithm, we
used an upper (and lower) bound of twice (and half) of the
initial buffer.

Our algorithm can be seen as operating on a continuum
between the two extremes of Sliding Windows and
Bottom-Up. The surprising result (demonstrated below) is
that by allowing the buffer to contain just 5 or 6 times the
data normally contained by is a single segment, the
algorithm produces essentially the same results as Bottom-
Up, yet is able process a never-ending stream of data. Our

new algorithm requires only a small, constant amount of
memory, and the time complexity is a small constant
factor worse than that of the standard Bottom-Up
algorithm.

Table 6: The SWAB (Sliding Window and Bottom-up)
algorithm

Algorithm Seg_TS = SWAB(max_error, seg_num)

 // seg_num is integer, about 5 or 6.

read in data points to fill w // w is the buffer

 // Enough to approximate seg_num of segments.

 lower_bound = (size of w) / 2;

 upper_bound = 2 * (size of w);

while data at input

 T = Bottom_Up(w, max_error)

 // Call the classic Bottom-Up algorithm.

 Seg_TS = CONCAT(SEG_TS, T(1));

 // Sliding window to the right.

 w = TAKEOUT(w, w’);

 // Deletes w’ points in T(1) from w.

 if data at input // Add points from BEST_LINE() to w.

 w = CONCAT(w, BEST_LINE(max_error));

 // Check upper and lower bound, adjust if necessary.

 else // Flush approximated segments from buffer.

 Seg_TS = CONCAT(SEG_TS, (T – T(1)))

 end;

end;

Function S = BEST_LINE(max_error) //returns S points.

 while error ≤ max_error // next potential segment.
 read in one additional data point, d, into S

 S = CONCAT(S, d);

 error = approx_segment(S);

 end while;

return S;

4.2 Experimental Validation

We repeated the experiments in Section 3, this time
comparing the new algorithm with pure (batch) Bottom-
Up and classic Sliding Windows. The result, summarized
in Figure 6, is that the new algorithm produces results that
are essentiality identical to Bottom-Up.

5. Conclusions

We have carried out the first extensive review and
empirical comparison of time series segmentation
algorithms from a data mining perspective. We have
shown the most popular approach, Sliding Windows,
generally produces very poor results, and that while the
second most popular approach, Top-Down, can produce
reasonable results, it does not scale well. In contrast, the
least well known, Bottom-Up, approach produces
excellent results and scales linearly with the size of the
dataset.

In addition, we have introduced SWAB, a new online
algorithm, which scales linearly with the size of the
dataset, requires only constant space and produces high
quality approximations of the data.

Reproducible Results Statement: In the interests
of competitive scientific inquiry, all datasets and code
used in this work are available, together with a
spreadsheet detailing the original unnormalized
results, by emailing the first author.

6. References

[1] Agrawal, R., Faloutsos, C., & Swami, A. (1993).
Efficient similarity search in sequence databases.
Proceedings of the 4th Conference on Foundations of Data
Organization and Algorithms.

[2] Agrawal, R., Lin, K. I., Sawhney, H. S., & Shim, K.

(1995). Fast similarity search in the presence of noise,
scaling, and translation in times-series databases.
Proceedings of 21th International Conference on Very
Large Data Bases. pp 490-50.
[3] Agrawal, R., Psaila, G., Wimmers, E. L., & Zait, M.
(1995). Querying shapes of histories. Proceedings of the
21st International Conference on Very Large Databases.
[4] Chan, K. & Fu, W. (1999). Efficient time series
matching by wavelets. Proceedings of the 15th IEEE
International Conference on Data Engineering.

[5] Das, G., Lin, K. Mannila, H., Renganathan, G., & Smyth,
P. (1998). Rule discovery from time series. Proceedings of

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

Space Shuttle

ECG

Tickwise 1

Radio Waves

Sine cubed

Manufacturing

Tickwise 2

Noisy Sine cubed

Water Level

Exchange Rate

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

SWAB
Sliding

Windows
Bottom

Up

Poor Approximation

Good Approximation

E*2
1
E*2

2
E*2

3
E*2

4
E*2

5
E*2

6

Figure 6. A comparison of the SWAB algorithm with pure (batch) Bottom-Up and classic Sliding Windows, on ten diverse
datasets, over a range in parameters. Each experimental result (ie. a triplet of histogram bars) is normalized by dividing by
the performance of the worst algorithm on that experiment

the 3rd International Conference of Knowledge Discovery
and Data Mining. pp 16-22.
[6] Douglas, D. H. & Peucker, T. K.(1973). Algorithms for
the Reduction of the Number of Points Required to
Represent a Digitized Line or Its Caricature. Canadian
Cartographer, Vol. 10, No. 2, December. pp. 112-122.
[7] Duda, R. O. and Hart, P. E. 1973. Pattern Classification
and Scene Analysis. Wiley, New York.
[8] Ge, X. & Smyth P. (2001). Segmental Semi-Markov
Models for Endpoint Detection in Plasma Etching. To appear
in IEEE Transactions on Semiconductor Engineering.
[9] Heckbert, P. S. & Garland, M. (1997). Survey of
polygonal surface simplification algorithms,
Multiresolution Surface Modeling Course. Proceedings of
the 24th International Conference on Computer Graphics
and Interactive Techniques.
[10] Hunter, J. & McIntosh, N. (1999). Knowledge-based
event detection in complex time series data. Artificial
Intelligence in Medicine. pp. 271-280. Springer.
[11] Ishijima, M., et al. (1983). Scan-Along Polygonal
Approximation for Data Compression of Electrocardiograms.
IEEE Transactions on Biomedical Engineering. BME-
30(11):723-729.
[12] Koski, A., Juhola, M. & Meriste, M. (1995). Syntactic
Recognition of ECG Signals By Attributed Finite Automata.
Pattern Recognition, 28 (12), pp. 1927-1940.

[13] Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra
(2000). Dimensionality reduction for fast similarity search in
large time series databases. Journal of Knowledge and
Information Systems.

[14] Keogh, E. & Pazzani, M. (1999). Relevance feedback
retrieval of time series data. Proceedings of the 22th Annual
International ACM-SIGIR Conference on Research and
Development in Information Retrieval.

[15] Keogh, E., & Pazzani, M. (1998). An enhanced
representation of time series which allows fast and accurate
classification, clustering and relevance feedback.
Proceedings of the 4th International Conference of
Knowledge Discovery and Data Mining. pp 239-241, AAAI
Press.

[16] Keogh, E., & Smyth, P. (1997). A probabilistic
approach to fast pattern matching in time series databases.
Proceedings of the 3rd International Conference of
Knowledge Discovery and Data Mining. pp 24-20.
[17] Lavrenko, V., Schmill, M., Lawrie, D., Ogilvie, P.,
Jensen, D., & Allan, J. (2000). Mining of Concurent Text
and Time Series. Proceedings of the 6th International
Conference on Knowledge Discovery and Data Mining. pp.
37-44.

[18] Li, C,. Yu, P. & Castelli V.(1998). MALM: A
framework for mining sequence database at multiple
abstraction levels. Proceedings of the 9th International
Conference on Information and Knowledge Management. pp
267-272.

[19] McKee, J.J., Evans, N.E., & Owens, F.J. (1994).
Efficient implementation of the Fan/SAPA-2 algorithm using
fixed point arithmetic. Automedica. Vol. 16, pp 109-117.

[20] Osaki, R., Shimada, M., & Uehara, K. (1999).
Extraction of Primitive Motion for Human Motion
Recognition. The 2nd International Conference on Discovery
Science. pp.351-352.

[21] Park, S., Kim, S. W., & Chu, W. W. (2001). Segment-
Based Approach for Subsequence Searches in Sequence
Databases, To appear in Proceedings of the 16th ACM
Symposium on Applied Computing.

[22] Park, S. & Lee, D., & Chu, W. W. (1999). Fast Retrieval
of Similar Subsequences in Long Sequence Databases",
Proceedings of the 3rd IEEE Knowledge and Data
Engineering Exchange Workshop.

[23] Pavlidis, T. (1976). Waveform segmentation through
functional approximation. IEEE Transactions on Computers.

[24] Perng, C., Wang, H., Zhang, S., & Parker, S. (2000).
Landmarks: a new model for similarity-based pattern
querying in time series databases. Proceedings of 16th

International Conference on Data Engineering.

[25] Qu, Y., Wang, C. & Wang, S. (1998). Supporting fast
search in time series for movement patterns in multiples
scales. Proceedings of the 7th International Conference on
Information and Knowledge Management.
[26] Ramer, U. (1972). An iterative procedure for the
polygonal approximation of planar curves. Computer
Graphics and Image Processing. 1: pp. 244-256.

[27] Shatkay, H. (1995). Approximate Queries and
Representations for Large Data Sequences. Technical Report
cs-95-03, Department of Computer Science, Brown
University.
[28] Shatkay, H., & Zdonik, S. (1996). Approximate
queries and representations for large data sequences.
Proceedings of the 12th IEEE International Conference on
Data Engineering. pp 546-553.
[29] Sugiura, N. & Ogden, R. T. (1994). Testing Change-
points with Linear Trend Communications in Statistics B:
Simulation and Computation. 23: 287-322.
[30] Vullings, H.J.L.M., Verhaegen, M.H.G. &
Verbruggen H.B. (1997). ECG Segmentation Using Time-
Warping. Proceedings of the 2nd International Symposium
on Intelligent Data Analysis.
[31] Wang, C. & Wang, S. (2000). Supporting content-
based searches on time Series via approximation.
Proceedings of the 12th International Conference on
Scientific and Statistical Database Management.

