
Matrix Profile II: Exploiting a Novel Algorithm and

GPUs to Break the One Hundred Million Barrier for

Time Series Motifs and Joins
Yan Zhu

1
, Zachary Zimmerman

1
, Nader Shakibay Senobari

2
, Chin-Chia Michael Yeh

1
, Gareth Funning

2
, Abdullah

Mueen
3
, Philip Brisk

1
 and Eamonn Keogh

1

1
Department of Computer Science and Engineering, University of California, Riverside

{yzhu015, zzimm001, myeh003}@ucr.edu, {philip, eamonn}@cs.ucr.edu
2
Department of Earth Sciences, University of California, Riverside, {nshak006, gareth}@ucr.edu

3
Department of Computer Science, University of New Mexico, mueen@cs.unm.edu

Abstract—Time series motifs have been in the literature for

about fifteen years, but have only recently begun to receive

significant attention in the research community. This is perhaps

due to the growing realization that they implicitly offer solutions

to a host of time series problems, including rule discovery,

anomaly detection, density estimation, semantic segmentation,

etc. Recent work has improved the scalability to the point where

exact motifs can be computed on datasets with up to a million

data points in tenable time. However, in some domains, for

example seismology, there is an insatiable need to address even

larger datasets. In this work we show that a combination of a

novel algorithm and a high-performance GPU allows us to

significantly improve the scalability of motif discovery. We

demonstrate the scalability of our ideas by finding the full set of

exact motifs on a dataset with one hundred million subsequences,

by far the largest dataset ever mined for time series motifs.

Furthermore, we demonstrate that our algorithm can produce

actionable insights in seismology and other domains.

Keywords—Time series; joins; motifs; GPUs.

I. INTRODUCTION

Time series motifs are approximately repeated
subsequences found within a longer time series. While time
series motifs have been in the literature for fifteen years [5],
they recently have begun to receive significant attention
beyond the data mining community. Recent years have seen
them applied to problems as diverse as understanding the
network of genes affecting the locomotion of the C. elegans
nematode [4] and cataloging speech pathologies in humans [3].

While significant progress has been made in how we
define, score, rank and visualize motifs, actually discovering
them in large datasets remains a bottleneck. To date, we are not
aware of any attempts to mine any dataset larger than one
million data points [11]. In this work we show how we can
significantly improve the scalability of exact motif discovery
both by leveraging GPU hardware, and by modifying the
recently introduced STAMP algorithm [23]. The STAMP
algorithm computes time series subsequence joins with an
efficient anytime algorithm [23]. Our key observations here
are:

 The solution to the full exact 1NN time series join can be
converted to the exact solution for any definition of time
series motif [14], with only trivial extra effort.

 The anytime property of STAMP may be useful to some
users, but as we explain below, in our motivating domain
of seismology it is not required or helpful. As we will
show, if we are willing to forego this property, we can
compute motifs at least an order of magnitude faster than
STAMP can. Moreover, forgoing the anytime property
also makes it much easier to leverage GPU hardware.

In keeping with the STAMP name [23], we call our faster
algorithm STOMP, Scalable Time series Ordered-search
Matrix Profile, and its GPU-accelerated version GPU-STOMP.

In this work we show that GPU-STOMP allows us to
significantly push the scalability envelope. We demonstrate the
scalability of our ideas by extracting motifs from a dataset with
one hundred million objects. Such a computation requires
computing (or admissibly pruning) 499,999,999,500,000,000
pairwise Euclidean distances calculations. If each Euclidean
distance calculation took 0.0000001 seconds, a brute force
algorithm would require 1,585 years

1
. As we will show, we can

compute this join in just twelve days. We recognize the twelve
days seems like significant computational time, but consider
that this data represents 58 days of continuous seismology
recorded at 20Hz. Thus even at this massive scale we are much
faster than real time. Fig. 1 previews a pair of repeating
earthquake sequences (essentially, a time series motif [5])
discovered by our algorithm in a seismologic dataset.

Fig. 1. A pair of repeating earthquake sequences (motifs) we discovered from

seismic data recorded at a station near Mammoth Lakes on February 17th,

2016. One occurrence (fine/red) is overlaid on top of another occurrence
(bold/blue) that happened hours earlier. (best viewed in color).

Here the two occurrences are very similar in spite of
happening 148 minutes apart; however, the geophysics of
earthquakes means that in principle we could see such similar
events millennia apart. Naturally we are limited to the few
decades humans have been recording such data (see Fig. 7).

1 499,999,999,500,000,000 * 0.0000001 seconds = 1585.49 years

5:31:09 @37.58 N 118.86 W Depth:5.13 Magnitude:1.29
7:59:24 @37.58 N 118.86 W Depth:5.00 Magnitude:1.24

0 10 20
seconds

The rest of this paper is organized as follows. In Section II
we introduce background and related work in data mining and
(briefly) seismology. In Section III we introduce the necessary
definitions and notations, which allow us to introduce our
algorithms in Section IV. We conduct an extensive empirical
comparison in Section V, including comparisons to the most
obvious rival methods. Finally, in Section VI we offer
conclusions and directions for related work.

II. BACKGROUND AND RELATED WORK

A. Motif Discovery Background

Motif discovery for time series was introduced in 2003 [5]
(although the classic paper of Agrawal, Faloutsos and Swami
foreshadows motifs by computing all-pair similarity for time
series [1]); since then, it has created a flurry of research
activity. One major direction has been to apply motifs to
solving problems in domains as diverse as bioinformatics [4],
speech processing [3], robotics, neurology and entomology
[14]. The other major research focus has been extensions and
generalizations of the original work, especially attempts to
improve scalability [11][14]. These attempts at improving the
scalability of motif discovery fall into two broad classes;
approximate and exact motif discovery [11][14].

Clearly approximate motifs can be faster to compute, and
may be useful in some domains. However, there are domains in
which the risk of false negatives is simply unacceptable.
Consider our motivating domain of seismology [24]. This is a
domain in which false negatives could affect public policy,
change insurance rates for customers, and conceivably cost
lives by allowing a dangerous site to be developed for
dwellings. Given that the task at hand is to find exact motifs,
all known methods based on hashing [24] and/or data
discretization [5] can be dismissed from consideration.

Virtually every time series data mining technique has been
applied to the motif discovery problem, including indexing
[11][21], data discretization [5], triangular-inequality pruning
[14], hashing [24], early abandoning etc. However, all these
techniques rely on the assumption that the intrinsic
dimensionality of time series is much lower than the recorded
dimensionality [22]. This is generally true for data such as
heartbeats and gestures, etc.; however, it is not true for
seismograph data, which is intrinsically high dimensional. To
see this, we performed a simple experiment.

We measured the Tightness of Lower Bounds (TLB) for
three types of data, using the two most commonly used
dimensionality reduction representations for time series, DFT
and PAA (In addition, PAA is essentially equivalent to the
Haar wavelets for this purpose [22]). The TLB is defined as:

TLB = LowerBoundDist(A,B) / TrueEuclideanDist(A,B)

It is well understood that the TLB is near perfectly
(inversely) correlated with wall-clock time, CPU operations,
number of disk access or any other performance metric for
similarity search, all-pair-joins, motifs discovery, etc. [22].

Fig. 2 shows unambiguous results. There is some hope that
we could avail current speed-up techniques when considering
(relatively smooth and simple) ECGs, little hope that the noisy
and more complex human activity would yield to such

optimizations, and no hope that anything currently in the
literature will help with seismological data. This claim is
further borne out in our detailed experiments in Section V.

Fig. 2. left) Samples from three datasets, ECG, Human Activity and

Seismology (available in [17]). right) The tightness of lower bounds, averaged

over 10,000 random pairs, using PAA and DFT.

Even if we ignore this apparent death-knell for
indexing/spatial access techniques, we could still dismiss them
for other reasons, including memory considerations. As we
shall see in Section IV, a critical property of our algorithm is
that unlike all indexing/spatial access methods it does not need
to explicitly extract the subsequences. For example, consider a
time series of length 100 million, with eight bytes per value,
requiring 0.8 GB. Our algorithm requires an overhead of seven
other vectors of the same size (including the output), for an
easily manageable total of 6.4 GB. However, any indexing
algorithm that needs to extract the subsequences will increase
memory requirements by at least O(d), where d is the reduced
dimensionality used in the index [12]. Given that d may be 20
or greater, this means the memory requirements grow to at
least 16 GB. With such a large memory footprint, we are
almost certainly condemned to a random access disk-based
algorithm, dashing any hope of any speedup.

A related advantage of our framework is that we can
choose the subsequence length just prior to doing the motif
discovery. In contrast, any index-based technique must commit
to a subsequence length before building the index, perhaps
hours/days before any actual searching could begin [20][22]. If
such an index is built to support subsequences of say length
200, it cannot be used to join subsequences of length 190 or
205, etc. (See Section 1.2.3 of [20]). Thus if we change our
mind about the length of patterns we are interested in, we are
condemned to a costly rebuilding of the entire index.

In summary, while we obviously are unable to absolutely
guarantee that there is no other scalable solution to our task-at-
hand, we are very confident that there is no existing off-the-
shelf technology that can be used or adapted to allow us to get
within two orders of magnitude of the results we obtain on the
largest datasets.

B. Seismological Background

While our algorithms are completely general and can be
applied to any domain, seismological data is of particular
interest to us, due to its sheer scale and importance in human
affairs.

0

0.5

1

T
ig

h
tn

es
s

o
f

L
o
w

er
 B

o
u
n
d

s

0 400

In the early 1980s it was discovered that in telemetry of
seismic data recorded by the same instrument from sources in
given region there will be many similar seismograms [6].
Geller and Mueller [6] suggested that “The physical basis of
this clustering is that the earthquakes represent repeated stress
release at the same asperity, or stress concentration, along the
fault surface.” These patterns are called “repeating earthquake
sequence” in seismology, and exactly correspond to the more
general term “time series motifs”. Fig. 1 shows an example of a
repeating earthquake sequence pair from seismic data.

A more recent paper notes that many fundamental problems
in seismology can be solved by joining seismometer telemetry
in search of these repeating earthquake sequence [24],
including the discovery of foreshocks, aftershocks, triggered
earthquakes, swarms, volcanic activity and induced seismicity.
However, the paper further notes that an exact join with a
query length of 200 on a data stream of length 604,781 requires
9.5 days. Their solution, a transformation of the data to allow
LSH based techniques, does achieve significant speedup, but at
the cost of false negatives and the need for careful parameter
tuning. For example, [23] notes that they need to set the
threshold to a very precise 0.818 to achieve good results. While
we defer a full discussion of experimental results until Section
V, the ideas introduced in this paper can reduce the quoted 9.5
days for exact motif discovery from a dataset of size 604,781,
to less than one minute, without the need to tune any
parameters and with a guarantee of no false negatives.

It is important to note that this kind of speed up really is
game-changing in this domain. It allows seismologists to
quickly identify or detect earthquakes that are identical or
similar in location without the need for trilateration, and can
also provide useful information on relative timing and relative
location of such events [2][9][10].

Somewhat more controversially, some researchers have
suggested that the slow slip on the fault accompanying non-
volcanic tremors (a sequence of Low Frequency Earthquakes,
many of which are repeated) may temporarily increase the
probability of triggering a large earthquake. Therefore,
detecting and locating these repeating LFEs allows more robust
short-term earthquake forecasting [9].

Finally, we note that seismologists have been early adopters
of GPU technology [13] and other high performance
computing paradigms. However, their use of this technology
has been limited to similarity search, not motif search.

III. NOTATION AND DEFINITIONS

While we mostly follow the framework introduced in [23],
for completeness we review all necessary definitions.

A. Definitions

We begin by defining the data type of interest, time series:

Definition 1: A time series T is a sequence of real-valued
numbers ti: T = t1, t2, ..., tn where n is the length of T.

We are interested not in global, but local properties of time
series. A local region of time series is called a subsequence:

Definition 2: A subsequence Ti,m of a time series T is a
continuous subset of the values from T of length m starting

from position i. Formally, Ti,m = ti, ti+1,…, ti+m-1, where 1 ≤ i ≤
n-m+1.

We can take a subsequence and compute its distance to all
subsequences in the same time series. We call this a distance
profile:

Definition 3: A distance profile Di of time series T is a
vector of the Euclidean distances between a given query
subsequence Ti,m and each subsequence in time series T.
Formally, Di = [di,1, di,2,…, di,n-m+1], where di,j (1 ≤ i, j ≤ n-
m+1) is the distance between Ti,m and Tj,m.

We assume that the distance is measured by Euclidean
distance between z-normalized subsequences [22].

We are interested in finding the nearest neighbors of all
subsequences in T, as the closest pairs of this are the classic
definition of time series motifs [5][14]. Note that by definition,
the i

th
 location of distance profile Di is zero, and very close to

zero just before and after this location. Such matches are called
trivial matches in the literature [14]. We avoid such matches by
ignoring an “exclusion zone” of length m/4 before and after the
location of the query. In practice, we simply set di,j to infinity
(i-m/4 ≤ j ≤ i+m/4) while evaluating Di.

We use a vector called matrix profile to represent the
distances between all subsequences and their nearest
neighbors:

Definition 4: A matrix profile P of time series T is a vector
of the Euclidean distances between each subsequence Ti,m and
its nearest neighbor (closest match) in time series T. Formally,
P = [min(D1), min(D2),…, min(Dn-m+1)], where Di (1 ≤ i ≤ n-
m+1) is the distance profile Di of time series T.

We call this vector matrix profile because one (naïve and
space-inefficient) way to compute it would be to compute the
full distance matrix of all pairs of subsequences in time series
T, and then evaluate the minimum value of each column. Fig. 3
illustrates both a distance profile and a matrix profile created
on the same raw time series T.

Fig. 3. top) One distance profile (Definition 3) created from a random

subsequence Q of T. If we created distance profiles for all possible
subsequences of T, the element-wise minimum of this set would be the matrix

profile (Definition 4) shown at (bottom). Note that the two lowest values in P

are at the location of the 1st motif [5][14].

One important fact to note is that the full distance matrix is
symmetric: Di is both the i

th
 row and the i

th
column of the full

distance matrix. Fig. 4 shows this more concretely.

T, synthetic data

D, a distance profile

Q, query of

length m

m/4m/40 2,500

Note that |D| = |T|-|Q|+1

0 2,500

Note that |P| = |T|-|Q|+1

T, synthetic data

P, a matrix

profile

Fig. 4. An illustration of the relationship between the distance profile, the

matrix profile and the full distance matrix. For clarity, we note we do not

actually create the full distance matrix, as this would have untenable memory
requirements.

The i
th
 element in the matrix profile P tells us the Euclidean

distance from subsequence Ti,m to its nearest neighbor in time
series T. However, it does not tell us where that neighbor is
located. This information is recorded in a companion data
structure called the matrix profile index.

Definition 5: A matrix profile index I of time series T is a
vector of integers: I=[I1, I2, … In-m+1], where Ii=j if di,j =
min(Di).

By storing the neighboring information this way, we can
efficiently retrieve the nearest neighbor of query Ti,m by
accessing the i

th
 element in the matrix profile index.

To briefly summarize this entire section: we can create two
meta time series, the matrix profile and the matrix profile
index, to annotate a time series T with the distance and location
of all its subsequences’ nearest neighbors within itself. As the
reader may already have realized, the smallest pair of values in
the matrix profile correspond to the best motif pair under the
classic definition [11][14][5], and the corresponding values in
the matrix profile index tell us where the motifs are located.
Moreover, as both [23][14] argue, the top-k motifs, range
motifs, and any other reasonable variant of motifs can trivially
be computed given all the information in the matrix profile, the
focus of the rest of this paper.

B. A Brief Review of the STAMP Algorithm

The recently-introduced STAMP algorithm can efficiently
compute the full and exact matrix profile and matrix profile
index of a given time series [23]. The STAMP algorithm
essentially evaluates the distance profile Di of query
subsequence Ti,m by exploiting FFT to calculate the dot product
between Ti,m and all subsequences of time series T. The overall
time complexity of the algorithm is O(n

2
logn) and space

complexity is O(n), where n is the length of time series T. The
STAMP algorithm can process a time series with up to a
million data points in tenable time. However, to tackle the
problems in our motivating domain seismology, there is an
unquenchable need to process even larger datasets. It would
take STAMP more than 20 years to analyze a seismology time
series sampled at 20Hz for about 2 months, which is of length
100 million (see TABLE IV). In the next section, we will
show a new and fast algorithm which, when built on top of a
GPU, can finish processing the same time series in just 12
days.

IV. ALGORITHMS

In this section we begin by showing that we can improve
upon the STAMP algorithm [23] to create the much faster
STOMP algorithm. We then further demonstrate that the
architecture of STOMP lends itself to porting to GPUs.

A. The STOMP Algorithm

As we shall explain below, STOMP is similar to STAMP
[23] in that it can be seen as highly optimized nested loop
searches, with the repeated calculation of distance profiles as
the inner loop. However, while STAMP must evaluate the
distance profiles in random order (to allow its anytime
behavior), STOMP performs an ordered search. It is by
exploiting the locality of these searches, that we can reduce the
time complexity by a factor of O(logn).

Before we explain the details of the algorithm, we first
introduce a formula to calculate the z-normalized Euclidean
distance di,j of two time series subsequences Ti,m and Tj,m using
their dot product, QTi,j:

 𝑑𝑖,𝑗 = √2𝑚(1 −
𝑄𝑇𝑖,𝑗−𝑚𝜇𝑖𝜇𝑗

𝑚𝜎𝑖𝜎𝑗
) 

Here m is the subsequence length, μi is the mean of Ti,m, μj
is the mean of Tj,m, σi is the standard deviation of Ti,m, and σj is
the standard deviation of Tj,m,

The technique introduced in [20] allows us to obtain the
means and standard deviations with O(1) time complexity;
thus, the time required to compute di,j depends only on the time
required to compute QTi,j. Here we claim that QTi,j can also be
computed in O(1) time, once QTi-1,j-1 is known.

Note that QTi-1,j-1 can be decomposed as:

 𝑄𝑇𝑖−1,𝑗−1 = ∑ 𝑇𝑖−1+𝑘𝑇𝑗−1+𝑘
𝑚−1
𝑘=0  

and QTi,j can be decomposed as:

 𝑄𝑇𝑖,𝑗 = ∑ 𝑇𝑖+𝑘𝑇𝑗+𝑘
𝑚−1
𝑘=0  

Thus we have:

 𝑄𝑇𝑖,𝑗 = 𝑄𝑇𝑖−1,𝑗−1 − 𝑡𝑖−1𝑡𝑗−1 + 𝑡𝑖+𝑚−1𝑡𝑗+𝑚−1 

Our claim is thereby proved.

The relationship between QTi,j and QTi-1,j-1 indicates that
once we have the distance profile Di-1 of time series T with
regard to Ti-1,m, we can obtain the distance profile Di with
regard to Ti,m in just O(n) time.

However, we cannot benefit from the relationship between
QTi,j and QTi-1,j-1 in the special case when i=1 or j=1. This
problem is easy to solve: we can pre-compute the dot product
values in these two special cases with FFT, as shown in
TABLE I. Concretely, we use SlidingDotProduct(T1,m, T) to
calculate the first dot product vector QT1 = [QT1,1, QT1,2, …,

D1 D2 … Dn-m+1

D1 d1,1 d1,2 … d1,n-m+1

D2 d2,1 d2,2 … d2,n-m+1

… … … … …

Dn-m+1 dn-m+1,1 dn-m+1,2 … dn-m+1,n-m+1

P min(D1) min(D2) … min(Dn-m+1)

QT1,n-m+1] = [QT1,1, QT2,1, …, QTn-m+1,1]. The dot product vector
is stored in memory and used as needed.

TABLE I. CALCULATE SLIDING DOT PRODUCT WITH FFT

Procedure SlidingDotProduct(Q, T)

Input: A query Q, and a user provided time series T

Output: The dot product between Q and all subsequences in T
1

2

3

4

5

6

7

n ← Length(T), m ← Length(Q)

Ta ← Append T with n zeros

Qr ← Reverse(Q)

Qra ← Append Qr with 2n-m zeros

Qraf ← FFT(Qra), Taf ← FFT(Ta)

QT ← InverseFFT(ElementwiseMultiplication(Qraf, Taf))

return QT[m:n]

We are now in a position to introduce our STOMP
algorithm in TABLE II.

TABLE II. STOMP ALGORITHM

Procedure STOMP(T, m)

Input: A time series T and a subsequence length m

Output: Matrix profile P and the associated matrix profile index I of T
1

2

3

4

5

6

7

8

9

10

11

12

13

14

n ← Length(T), l ← n-m+1

μ, σ ← ComputeMeanStd(T, m) // see [20]

QT ← SlidingDotProduct(T[1:m], T), QT_first ← QT

D ← CalculateDistanceProfile(QT, μ, σ) // see 

P← D, I← ones // initialization

for i = 2 to l // in-order evaluation

 for j= l downto 2 // update dot product, see 

 QT[j] ← QT[j-1]-T[j-1]×T[i-1]+T[j+m-1]×T[i+m-1]

 end for

 QT[1] ← QT_first[i]

 D ← CalculateDistanceProfile(QT, μ, σ, i) // see 

 P, I ← ElementWiseMin(P, I, D, i)

end for

return P, I

The algorithm begins in line 1 by computing the matrix
profile length l. In line 2 we precalculate the mean and standard
deviation of every subsequence in T. Line 3 calculates the first
dot product vector QT with the algorithm in TABLE I. In line 5
we initialize the matrix profile P and matrix profile index I.
The loop in lines 6-13 calculates the distance profile of every
subsequence of T in sequential order, with lines 7-9 updating

QT according to . We update QT[1] in line 10 with the pre-
computed QT_first in line 3. Line 11 calculates distance profile

D according to . Finally, line 12 compares every element of
P with D: if D[j] < P[j], then P[j] = D[j], I[j] = i.

The time complexity of STOMP is O(n
2
); thus, we have

achieved a O(logn) factor speedup over STAMP [23].
Moreover, it is clear that O(n

2
) is optimal for any exact motif

algorithm in the general case. The O(logn) speedup clearly
makes little difference for small datasets, those with just a few
tens of thousands of datapoints [5]. However, as we consider
the datasets with millions of datapoints, this O(logn) factor
begins to produce a very useful order-of-magnitude speedup.

To better understand the efficiency of STOMP, it is
important to clarify the time complexity of the classic brute
force algorithm is O(n

2
m). The value of m is domain

dependent, but in Section V.F we consider real world problems
where it is 2,000. Most techniques in the literature gain
speedup by shaving a little off the n

2
 factor; however, we gain

speedup by reducing the m factor to O(1). Moreover, it is

important to remember that the techniques in the literature can
only reduce this n

2
 factor if the data cooperates by having a low

intrinsic dimensionality (recall Fig. 2), and the domain requires
a short subsequence length. In contrast, the speedup for
STOMP is completely independent of both the structure of the
data and the subsequence length.

In spite of this dramatic improvement, it still takes STOMP
approximately 5-6 hours to process a time series of length one
million. Can we further reduce the time?

Note that the STOMP algorithm is extremely amenable to
parallel computing frameworks. This is not a coincidence; the
algorithm was conceived with a view to eventual hardware
acceleration. Recall that the space requirement for the
algorithm is only O(n); there is no data dependency in the main
inner loop of the algorithm (lines 7-9 of TABLE II), so we can
update all entries of QT in parallel. The evaluation of each
entry in vectors D, P and I in lines 11 and 12 are also
independent of each other. In the next section, we will
introduce a GPU-based version of STOMP, taking advantage
of these observations to further speed up the evaluation of
matrix profile and thus motif discovery.

B. Porting STOMP to a GPU Framework

The Graphic Processor Unit, or GPU, is “especially well-
suited to address problems that can be expressed as data-
parallel computations” [15]. It has its own memory, and can
launch multiple threads in parallel. Here we use the ubiquitous
Single Instruction Multiple Data (SIMD) NVIDIA CUDA
architecture, where we can assign multiple threads to process
the same set of instructions on multiple data.

The threads on the GPU are managed in thread blocks.
Threads in a thread block run simultaneously, and can
cooperate with each other through shared local resources. A
CUDA function is called a kernel. When we launch a kernel,
we can specify the number of blocks, and the number of
threads in each block to run on GPU. For example, the
NVIDIA Tesla K80 allows launching at most 1024 threads
within a block and as many as 2

63
 blocks (a total of 2

73

threads), which is much more than enough to process a time
series of length 100 million.

The GPU implementation of the STOMP algorithm in
TABLE II can be decomposed into four steps:

 CPU copies the time series to GPU global memory.

 CPU launches GPU kernels to evaluate μ, σ, initial
QT, D, P and I.

 CPU iteratively launches GPU kernels to update QT,
D, P and I.

 CPU copies final output (P and I) from GPU.

In the first step, the CPU copies time series T (input vector
of TABLE II) to the global memory of GPU. The time used to
copy a time series of length 100 million takes less than a
second. Note that in order to run the STOMP algorithm, we
need to allocate space to store eight vectors in the GPU global
memory: T, μ, σ, QT, QT_first, D, P and I. A double-precision
time series of length 100 million is approximately 0.8GB, so
the algorithm consumes approximately 6.4GB global memory

space. This is feasible for NVIDIA Tesla K40 and K80 cards;
however, if the device used has less memory space available,
we can simply split the time series into small chunks and
evaluate one chunk at a time with the GPU.

In the second step, the CPU launches GPU kernels to
evaluate the vectors in parallel. The mean and standard
deviation vectors in line 2 of TABLE II can be efficiently
evaluated by CUDA Thrust [15]. The first QT vector in line 3
can be evaluated in parallel by applying cuFFT, the NVIDIA
CUDA Fast Fourier Transform [16] to the SlidingDotProduct
function in TABLE I. We assign a total of n-m+1 threads to
evaluate QT_first, D, P and I in lines 3-5 in parallel, with the j

th

thread processing the j
th
 entry of these vectors one by one.

Now that we have initialized QT, D, P and I, we can start to
update them iteratively. In the third step, the CPU runs the
outer loop in lines 6-13 of TABLE II iteratively. In each
iteration the CPU launches a GPU kernel with n-m+1 threads,
parallelizing the evaluation of QT, D, P and I. As shown in Fig.
5, the first thread reads QT[1] from the precomputed QT_first
vector, while the second to the last threads evaluate their

corresponding entry of QT using

Note that in contrast to the CPU STOMP algorithm, which
uses only one vector QT to store both QTi-1 and QTi, here we
need to use two vectors to separate them. The reason is that as
the threads evaluate entries in QT in parallel, we need to avoid
any entry to be written before it is read. A simple and efficient
way to do this is to create two vectors, QT_odd and QT_even.
When the outer loop variable i in line 6 is even, the threads
read from QT_odd and write to QT_even; when i is odd, the
threads read data from QT_even and write to QT_odd. After

this, the threads evaluate D with , and the j
th
 thread updates

P and I if D[j] < P[j].

Fig. 5. Division of work among threads in the third step of GPU STOMP.

When all iterations complete, we have reached the last step
of GPU STOMP, where the CPU copies P and I back to the
system memory.

C. Further Parallelizing STOMP with multiple GPUs

The above parallelization scheme is suitable if we only
have one single GPU device. Can we further reduce the
processing time if there are two or more GPUs available?

Thus far, we have been using CPU to iteratively control the
outer loop of the STOMP algorithm in TABLE II. We start by
computing the first distance profile (the first row) in Fig. 4 and
its corresponding QT vector. Then in each iteration we
compute a new row of the distance matrix in Fig. 4, and

maintain the minimum-so-far values of each column in vector
P. When the iteration is completed, P becomes the exact matrix
profile.

This outer loop computation can be further parallelized.
Assume we have k independent GPU devices, and we also
have (n-m+1)/k = q. We can then divide the distance matrix in
Fig. 4 into k sections: device 1 evaluates the 1

th
to the q

th
 rows,

device 2 evaluates the (q+1)
th
 to the (2q)

th
 rows, etc.

Essentially, device k uses the parallelized version of
SlidingDotProduct function in TABLE I to calculate QTq(k-1)+1
and Dq(k-1)+1, then evaluates the following q-1 rows iteratively.
The k devices can run in parallel, and when the evaluation
completes, we can simply find the minimum among all the k
matrix profile outputs. In short, we can achieve a k-times speed
up by using k identical GPU devices.

By porting all the introduced techniques to NVIDIA Tesla
K80, which contains two GPU devices on the same unit, we
are able to obtain the matrix profile and matrix profile index of
a seismology time series of length 100 million within 19 days.
Are there any further optimizations left?

D. A Technique to Further Accelerate GPU STOMP

Fig. 5 showed the process to compute the i
th
 row of the

distance matrix in Fig. 4 by n-m+1 parallel threads. Recall that
the distance matrix is symmetric; half of the distance
computations can be saved if we instead only evaluate the i

th
 to

the last columns. We show this strategy in Fig. 6.top.

However, note that we would like to maintain the O(n)
space complexity of our algorithm; if we simply move on to
the (i+1)

th
 row in Fig. 4 without further processing, then Pi =

min(d1,i, d2,i, …, di,i), and would not be updated anymore. To fix
this, we need to launch another kernel after Fig. 6.top is
completed. The new kernel is shown in Fig. 6.bottom.

Fig. 6. Modifying the third step of GPU-STOMP. top) Launch only n-m-i+2

threads (instead of the n-m+1 threads in Fig. 5) this time at the ith iteration.

bottom) Launch another kernel to evaluate the final value of Pi.

P1 P2 P3 … Pn-m+1

di,1 di,2 di,3 … di,n-m+1

QTi,1 QTi,2 QTi,3 … QTi,n-m+1

(4)

(1)

Update
if Smaller

QTi-1,1 QTi-1,2 … QTi-1,n-m QTi-1,n-m+1

…

Pi

Pi Pi+1 … Pn-m+1

QTi,i QTi,i+1 … QTi,n-m+1

See (4)

di,i di,i+1 … di,n-m+1

QTi-1,i-1 QTi-1,i … QTi-1,n-m QTi-1,n-m+1

…

See (1)

di,i+1 di,i+2 … di,n-m+1

Update if Smaller

Second Kernel Launch: Evaluate Final Value of Pi

min
dmin

Update if Smaller

First Kernel Launch: Update Pi to Pn-m+1

Essentially, we have used an analogous reduction technique
as in [7] to obtain dmin = min(di,i+1, di,i+2, …, di,m+n-1), which also
equals min(di+1,i, di+2,i, …, dn-m+1,i) because of symmetry. If dmin
< Pi, we set Pi = dmin, so that Pi = min(Di). Though we need to
launch one more kernel to process each row, which takes some
extra time, the cost is much less than what we save here when
the time series length is large. For example, the new technique
reduced the time to process a time series of length 100 million
from 19 days to about 12 days on NVIDIA Tesla K80.

Note that we are launching fewer and fewer threads in each
iteration. To apply this new technique to multiple GPUs, we
need to ensure that each GPU is loaded with similar amount of
work, so that they will finish in similar time. Here, for

NVIDIA Tesla K80, we computed the first (n-m+1)(1-1/√2)

distance profiles with the first GPU, and the last (n-m+1)/√2
distance profiles with the second GPU.

V. EMPIRICAL EVALUATION

We have designed all our experiments such that they can be
easily reproducible (although some require access to a GPU).
To allow this, we have built a webpage [17] which contains all
datasets and code used in this work. We begin by a careful
comparison to STAMP, which is obviously the closest
competitor; we consider more general rival methods later.

Unless otherwise noted, we used an Intel i7@4GHz PC
with 4 cores to evaluate all the CPU-based algorithms; we used
a server with two Intel Xeon E5-2620@2.4GHz cores and an
NVIDIA Tesla K80 GPU to evaluate GPU-STOMP.

A. STAMP vs STOMP

 We begin by demonstrating that STOMP is faster than
STAMP, and that this difference grows as we consider
increasingly large datasets. We further measure the gains made
possible by using GPU-STOMP. In TABLE III we measure the
performance of the three algorithms on increasingly long
random walk time series with a fixed subsequence length 256.

TABLE III. TIME REQUIRED FOR MOTIF DISCOVERY WITH 𝑚 = 256, VARYING

𝑛, FOR THE THREE ALGORITHMS UNDER CONSIDERATION

Algorithm Value of n 217 218 219 220 221

STAMP 15.1 min 1.17 hours 5.4 hours 24.4 hours 4.2 days

STOMP 4.21 min 0.3 hours 1.26 hours 5.22 hours 0.87 days

GPU-STOMP 10 sec 18 sec 46 sec 2.5 min 9.25 min

Note that we choose m’s length as a power-of-two only to

offer the best case for (the FFT-based) STAMP; our algorithm

is agnostic to such issues.

A recent paper on finding motifs in (only) seismograph

datasets also considers a dataset of about 2
19

 in length and

reports taking 1.6 hours, about the same as STOMP [24].

However, their method is probabilistic and allows false

negatives (twelve of which were actually observed, after

checking against the results of a 9.5 day brute-force search

[24]). Moreover, it requires careful tuning of several

parameters, and does not lend itself to GPU implementation.

We wish to consider the scalability of even larger datasets
with GPU-STOMP. However, in order to do so we must
estimate the time for the two other algorithms. Fortunately,

both the other algorithms allow an approximate prediction of
the time needed, given the data length n. To obtain the
estimated time, we evaluated only the first 100 distance
profiles of both STAMP and STOMP, and multiplied the time
used by (n-m+1)/100. In TABLE IV we consider much larger
datasets, one of which reflects the data used in a case study in
Section V.C.

TABLE IV. TIME REQUIRED FOR MOTIF DISCOVERY WITH VARIOUS 𝑚 AND

VARIOUS 𝑛, FOR THE THREE ALGORITHMS UNDER CONSIDERATION

Algorithm m | n 2000 | 17,279,800 400 | 100,000,000

STAMP (estimated) 36.5 weeks 25.5 years

STOMP (estimated) 8.4 weeks 5.4 years

GPU-STOMP (actual) 9.27 hours 12.13 days

Note that the 100-million-length dataset is one hundred

times larger than the largest motif search in the literature [11].

All three algorithms under consideration have the very

desirable property that the time required is independent of the

subsequence length m. To see this, in TABLE V we measure

the time required with n fixed to 2
17

, for increasing m.

TABLE V. TIME REQUIRED FOR MOTIF DISCOVERY WITH 𝑛 = 217, VARYING 𝑚,
FOR THE THREE ALGORITHMS UNDER CONSIDERATION

Algorithm Value of m 64 128 256 512 1,024

STAMP 15.1 min 15.1 min 15.1 min 15.0 min 14.5 min

STOMP 4.23 min 4.33 min 4.21 min 4.23 min 2.92 min

GPU-STOMP 10 sec 10 sec 10 sec 10 sec 10 sec

Note that the time required for the longer subsequences is
actually slightly shorter. This unintuitive fact is because the
number of pairs that must be considered for a time series join
[23] is (n-m+1)

2
, so as m becomes larger, the number of

comparisons becomes slightly smaller.

B. STOMP vs State-of-the-Art Motif Discovery Algorithms

Beyond independence of the subsequence length
demonstrated in TABLE V, all three matrix profile-based
algorithms also have the very desirable property that the time
required is independent of data under consideration. To see
this, we will compare to the recently introduced Quick-Motif
framework [11], and the more widely known MK algorithm
[14]. The Quick-Motif method was the first technique to do
exact motif search on one million subsequences.

To level the playing field, we do not avail of GPU
acceleration, but use the identical hardware (a PC with Intel
i7-2600@3.40GHz) and programming language for all
algorithms. Note that for a fair comparison with STAMP [23],
which is written in MATLAB, in Section V.A we measured
the performance of STOMP based on its MATLAB
implementation. However, because the two rival methods in
this section (Quick-Motif and MK) are written in C/C++, here
we measure the runtime of (the CPU version of) STOMP
based on its C++ implementation.

We use the original author’s executables [18] to evaluate
the runtime of both MK and Quick-Motif. The reader may
wonder why the experiments here are less ambitious than in
the previous sections. The reason is that beyond time
considerations, the rival methods have severe memory

requirements. For example, for a seismology data with m =
200, n = 2

18
, we measured the Quick-Motif memory footprint

as large as 1.42 GB. In contrast, STOMP requires only 14MB
memory for the same data, which is less than 1/100 of this. If
this ratio linearly interpolates, Quick-Motif would need more
than ½ terabyte of main memory to tackle the one-hundred-
million benchmark, which is simply infeasible. Moreover, for
Quick-Motif it is possible that a different dataset of the exact
same size could require a larger or smaller footprint. In
contrast, the space required for STOMP is independent of both
the structure of data and the subsequence length.

This severe memory requirement makes it impossible to
compare the STOMP algorithm with Quick-Motif on the
seismology data, since Quick-Motif often crashed with an out-
of-memory error as we varied the value of m. However, we
noticed that the memory footprint for Quick-Motif tends to be
much smaller with smooth data. Therefore, instead of
comparing performance of the algorithms on seismology data,
in TABLE VI we experimented on the much smoother ECG
dataset (used in [20]), which is an ideal dataset for both MK
and Quick-Motif to achieve their best performance.

TABLE VI. TIME REQUIRED FOR MOTIF DISCOVERY WITH 𝑛 = 218, VARYING 𝑚,
FOR VARIOUS ALGORITHMS

Algorithm m 512 1,024 2,048 4,096

STOMP 501s (14MB) 506s (14MB) 490s (14MB) 490s (14MB)

Quick-Motif 27s (65MB) 151s (90MB) 630s (295MB) 695s (101MB)

MK 2040s (1.1GB) N/A (>2GB) N/A (>2GB) N/A (>2GB)

As we can see, both the runtime and memory requirement
for STOMP are independent of the subsequence length. In
contrast, Quick-Motif and MK both scale poorly in
subsequence length in both runtime and (especially) memory
usage. Note that the memory requirement of Quick-Motif is
not monotonic in m, as reducing m from 4,096 to 2,048
requires three times as much memory. This is not a flaw in
implementation (we used the author’s own code) but a
property of the algorithm itself.

In retrospect, this poor showing of both Quick-Motif and
MK are unsurprising given the observations in Fig. 2. Both
algorithms can be fast in ideal situations, with smooth data,
short subsequence lengths, and “tight” motifs in the data. But
both can, and do, require very large memory space and
degenerate to brute-force search in less ideal situations.
Moreover, as we will show in the next two sections, STOMP
is actually computing much more useful information than the
two rival methods.

C. Case Studies in Seismology: Infrequent Earthquake Case

To allow confirmation of the correctness and utility of
STOMP, we begin by considering a dataset for which we
know the answer from external sources. On April 30

th
, 1996,

there was an earthquake of magnitude 2.12 in Sonoma
County, California

2
. Then, on December 29

th
, 2009, about

13.6 years later, there was another earthquake with a similar
magnitude. We concatenated the two full days in question to
create a single time series of length 17,279,800 (see TABLE

2
 A small earthquake of that magnitude would only be felt by

attentive humans in the immediate vicinity of the epicenter.

IV for timing results) and examined the top motifs with m =
2,000 (twenty seconds). As Fig. 7.top shows, the top motif
here is not an earthquake, but an unusual sensor artifact [8].

Fig. 7. Motifs (colored) shown in context (gray). top) The top motif

discovered in the Sonoma County dataset is a sensor artifact, as are the next

three motifs (not shown). bottom) The fifth motif is two true occurrences of an

earthquake that happen 4,992 days apart.

There are a handful of other such artifacts, however, as
shown in Fig. 7.bottom, the fifth best motif is the two
occurrences of the earthquake. These misleading sensors
artifacts are common, but could be easily filtered out in
several ways [8]. For example, they have a zero crossing rate
that is an order of magnitude lower than true earthquakes.

This example allows us to demonstrate yet another
advantage of STƒOMP over rival methods. All the existing
rival techniques can be expanded from top-1 motif discovery
to top-k motif discovery; however, increasing k by even a
modest amount will significantly degrade their speed.

Furthermore, consider again the example in Fig. 7. There
is simply no way we could have known the “magic” value of k
= 5 beforehand. If k was set to a large value to “be on the safe
side”, say k = 10, then all existing techniques would severely
slow down because the best-so-far lower bound to prune
unnecessary computations would be much looser. If we set k
as a more conservative value, say k = 3, then we would miss
the most valuable information in this seismology dataset. You
might imagine that the rival methods could slowly increase
from k to k+1 based on the user’s lack of satisfaction with the
k motifs she has examined thus far; however, each adjustment
of k will require all existing techniques to perform significant
extra computation, even if they have cached the results of
every calculation they have performed.

In contrast, the time needed for STOMP is totally
independent of k. We only need to run STOMP once; as the
matrix profile obtained already contains all necessary
information, it takes trivial extra effort to find the top k motif,
no matter how large k is.

D. Parameter Settings

As we previously noted, STOMP (together with STAMP)
is unique among motif discovery algorithms in being
completely parameter-free. In contrast, Random Projection [5]
has four parameters, Quick-Motif [11] has three parameters,
Tree-Motif has four parameters [21], MK [14] has one
parameter, and FAST has three parameters [24].

0 1000 2000 3000

1996

2009

1996, ID:30104990

2009, ID:371327705

That being said, the reader may wonder about the only
input value besides the time series of interest: the subsequence
length m. Note that this is a required input for all the other
existing techniques as well. We do not consider m a true
parameter, as it is a user choice, reflecting her prior
knowledge of the domain. Nevertheless, it is interesting to ask
how sensitive motif discovery is to this choice, at least in the
seismology domain that motivates us.

To test this, we edited the data above such that the two
earthquakes in Fig. 7.bottom happen exactly 13 minutes 20
seconds apart. We reran motif discovery with m=2,000
(twenty seconds), with double that length (m=4,000), and with
half that length (m=1,000). Fig. 8 shows the result.

Fig. 8. top) Thirty minutes of seismograph data that has the two earthquakes

from Fig. 7.bottom occur at 6min-40s and 20min. bottom) The matrix profile

computed if we use the suggested subsequence length 2,000 (blue), or if we
use twice the length (red), or half that length (green)

The results are very reassuring. At least for earthquakes,
motif discovery is not sensitive to the user input. Even a poor
guess as to the best value for m will likely give good results.

E. Case Studies in Seismology: Earthquake Swarm Case

In the previous section we discovered a repeating
earthquake source that has a frequency of about once per 13.6
years. Here we consider earthquakes that are literally tens of
millions of times more frequent.

Forecasting volcanic eruptions is of critical importance in
many parts of the world [19]. For example, on May 18

th
, 1980

Mount St. Helens had a paroxysmal eruption that killed 57
people [10]. It is conjectured that explosive eruptions are
commonly preceded by elevated or accelerated gas emissions
and seismicity, thus seismology is a major tool for both
monitoring and predicting such events.

In Fig. 9 we show a short section of the matrix profile of a
seismograph recording at Mount St Helens. It is important to
restate that this is not the raw seismograph data, but the matrix
profile that STOMP computed from it.

Fig. 9. The matrix profile of a seven-minute snippet from a seismograph

recording at Mount St Helens.

The image shows a stunning regularity. Repeated
earthquakes are occurring approximately once every thirty-
eight seconds. This is consistent with the findings of a team
from the US Geological Survey that reported that the

earthquakes, which accompanied a dome-building eruption,
appeared “... so regularly that we dubbed them ‘drumbeats’.
The period between successive drumbeats shifted slowly with
time, but was 30–300 seconds” [10].

This example shows a significant advantage of our
approach, that we share with STAMP but no other motif
discovery algorithm. Instead of computing just O(1) distance
values for the top k motifs, STOMP is computing all O(n)
distances from every subsequence to their nearest neighbors.
By plotting the entire matrix profile we can gain unexpected
insights by seeing the motifs in context. For example, in the
above we can see both the surprising periodicity of the
earthquakes, and by comparing the smallest values in the
matrix profile with the mean or maximum values, we can get a
sense of how well the motifs are conserved, relative to
“chance” occurrences. It could also potentially tell us whether
there were changes to the earthquake source, reflecting
changes in eruptive behavior over time.

A recent paper performed a similar analysis on the Mount
Rainier volcano, making the interesting and unexpected
discovery that the frequency of earthquakes is correlated with
snowfall [2]. However, the paper bemoans at the number of
ad-hoc “hacks” that needed to make such an exploration
tenable. For example, “In order to save on computing time, we
cut out detections that are unlikely to contain a repeating
earthquake event by excluding events with a signal width,”
and “To save on computing time, we define that in order to be
detected…” etc. [2]. However, the results in TABLE IV tell us
that we could simply bypass these issues by spending a few
hours computing the full exact answers. This would avoid the
risk that some speedup “trick” makes us miss an interesting
and unexpected pattern.

F. A Case Study in Animal Behavior

While seismology is the primary motivator for this work,
nothing about our algorithm assumes anything about the data’s
structure, or precludes us from considering other datasets. In
this section we briefly consider telemetry collected from
Magellanic penguins (Spheniscus magellanicus). The data was
collected by attaching a small multi-channel data-logging
device to the bird. The device recorded tri-axial acceleration,
tri-axial magnetometry, pressure, etc. As shown in Fig. 10, for
simplicity here we consider only Y-axis magnetometry.

Fig. 10. left) The Magellanic penguin is a strong swimmer. right) A four-

minute snippet of the full dataset reveals high levels of noise and no obvious
structure.

The data is labeled by an observer with binoculars; thus we
have a coarse ground truth for the animal’s behavior. The full
data consists of 1,048,575 data points recorded at 40 Hz (about
7.5 hours). We ran GPU-STOMP on this dataset, using a
subsequence length of 2,000. This took our algorithm just 2.5
minutes. As shown in Fig. 11, the top motif is a surprisingly
well conserved “shark fin” like pattern.

raw seismograph data

matrix profiles

0min 30min

1:45am 1:52am

38 seconds

1st February 2006

514,000 524,000

-0.1

0

0.1

0.2
Y-axis magnetometry

Fig. 11. The top motif of length 2,000 discovered in the penguin dataset. Only

three examples are shown for visual clarity, there are eight such patterns.

What (if anything) does this pattern mean? Suggestively,
we observed this pattern does not happen during any of the
regions annotated as nesting, walking, washing, etc., but only
during regions labeled foraging. Could this motif be related to
a diving (for food) behavior?

Fortunately, diving is the one behavior we can
unambiguously determine from the data, as the pressure
increases by orders of magnitude when the penguin is under
water. We discovered that the motif occurs moments before
each dive, and nowhere else.

More generally, we see this example as being typical of the
sort of interaction that motif discovery supports. In most cases
motif discovery is not the end of analyses, but only the
beginning. By correlating the observed motifs with other
(internal or external) data we can form hypotheses and open
avenues for further research. Recall the previous section; this is
rather like how the team studying Mount Rainier’s seismology
discovered that its earthquakes are correlated with snowfall [2].
We believe that the STOMP algorithm may enable many such
unexpected discoveries in a vast array of domains.

VI. CONCLUSIONS

We introduced STOMP, a new algorithm for time series
motif discovery, and showed that it is theoretically and
empirically faster than its strongest rivals in the literature,
STAMP [23], Quick-Motif [11] and MK [14]. In the limited
domain of seismology, we showed that STOMP is at least as
fast as the recently introduced FAST algorithm [24], but
STOMP does not allow false negatives and does not need
careful parameter tuning. Moreover, for datasets and
subsequences lengths encountered in the real world, STOMP
requires one to three orders of magnitude less memory than
rival methods. This is not a gap that is likely to be closed by a
new implementation of these algorithms. STOMP is unique
among motif discovery algorithms in not exacting
subsequences, but doing all the computations in-situ.

We further showed optimizations that allow STOMP to
take advantage of GPU architecture, opening an even greater
performance gap and allowing the first exact motif search in a
time series of length one-hundred-million.

In future work we plan to investigate multidimensional and
incremental versions of our algorithms. The latter may have
implications for real-time earthquake warning systems,
reducing the probability of false alarms by ultra-fast lookup of
dictionaries of previous confirmed events [24].

ACKNOWLEDGMENT

This research was funded by NSF IIS-1161997 II and NSF
IIS 1510741. We gratefully acknowledge all the donors of the
datasets.

REFERENCES

[1] R. Agrawal, C. Faloutsos, and A. Swami: Efficient Similarity Search In
Sequence Databases. Springer Berlin Heidelberg. 1993: 69-84

[2] K. Allstadt, and S. D. Malone. Swarms of repeating stick-slip icequakes
triggered by snow loading at Mount Rainier volcano. Journal of
Geophysical Research: Earth Surface, 119.5 (2014): 1180-1203.

[3] A. Balasubramanian, J. Wang, P. Balakrishnan (In press). Discovering
multidimensional motifs in physiological signals for personalized
healthcare. IEEE Journal of Selected Topics in Signal Processing.

[4] A. E. X. Brown, E. I. Yemini, L. J. Grundy, T. Jucikas, and W. R.
Schafer. A dictionary of behavioral motifs reveals clusters of genes
affecting caenorhabditis elegans locomotion. Proceedings of the
National Academy of Sciences, 110.2 (2013): 791–796.

[5] B. Chiu, E. Keogh, and S. Lonardi: Probabilistic discovery of time series
motifs. KDD 2003: 493-498

[6] R. J. Geller, and C. S. Mueller. Four similar earthquakes in central
California. Geophys. Res. Lett., 7.10 (1980): 821–824.

[7] M. Harris. Optimizing Parallel Reduction in CUDA. NVIDIA Developer
Technology 2.4 (2007).

[8] J. Havskov, and G. Alguacil (2004). Instrumentation in Earthquake
Seismology. Vol. 358. New York: Springer.

[9] T. Igarashi, T. Matsuzawa, A. Hasegawa (2003). Repeating earthquakes
and interplate aseismic slip in the northeastern Japan subduction zone.
Journal of Geophysical Research: Solid Earth, 108 (B5).

[10] R. M. Iverson, et al. Dynamics of seismogenic volcanic extrusion at
Mount St. Helens in 2004–05. Nature 444.7118 (2006): 439–443.

[11] Y. Li, L. H. U, M. L. Yiu, Z. Gong. Quick-motif: An efficient and
scalable framework for exact motif discovery. ICDE 2015: 579-590

[12] W. Luo, H. Tan, H. Mao, and L. M. Ni, 2012. Efficient Similarity Joins
on Massive High-dimensional Datasets Using Mapreduce. In MDM'12,
IEEE, pp. 1-10.

[13] X. Meng, X. Yu, Z. Peng, and B. Hong, Detecting earthquakes around
salton sea following the 2010 mw7.2 El Mayor-Cucapah earthquake
using GPU parallel computing, Procedia CS, vol. 9, pp. 937-946, 2012.

[14] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and M. B. Westover. Exact
Discovery of Time Series Motifs. SDM 2009, vol. 9, pp. 473-484.

[15] NVIDIA CUDA C Programming Guide. Version 7.5.
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[16] NVIDIA CUFFT Library User’s Guide. Version 7.5.
http://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf

[17] Project Website: http://www.cs.ucr.edu/~eamonn/MatrixProfile.html

[18] “Quick Motif”, http://degroup.cis.umac.mo/quickmotifs/

[19] R. S. J. Sparks, Forecasting volcanic eruptions. Earth and Planetary
Science Letters, 210.1 (2003): 1–15.

[20] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. Batista, M. B.
Westover, Q. Zhu, J. Zakaria, E. J. Keogh: Addressing Big Data Time
Series: Mining Trillions of Time Series Subsequences Under Dynamic
Time Warping. TKDD 7.3 (2013): 10.

[21] L. Wang, E. S. Chng, and H. Li: A tree-construction search approach for
multivariate time series motifs discovery. Pattern Recognition Letters
31,9 (2010): 869-875.

[22] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, E.
Keogh: Experimental comparison of representation methods and
distance measures for time series data. Data Min. Knowl. Discov. 26.2
(2013): 275-309.

[23] C. C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F.
Silva, A. Mueen, E. Keogh. Matrix Profile I: All Pairs Similarity Joins
for Time Series: A Unifying View that Includes Motifs, Discords and
Shapelets. IEEE ICDM 2016.

[24] C. E. Yoon, O. O’Reilly, K. J. Bergen, and G. C. Beroza. Earthquake
Detection through Computationally Efficient Similarity Search. Sci.
Adv. 1.11 (2015): e1501057.

1000 20000

