
Matrix Profile II: Exploiting a Novel Algorithm and 

GPUs to Break the One Hundred Million Barrier for 

Time Series Motifs and Joins 
Yan Zhu

1
, Zachary Zimmerman

1
, Nader Shakibay Senobari

2
, Chin-Chia Michael Yeh

1
, Gareth Funning

2
, Abdullah 

Mueen
3
, Philip Brisk

1
 and Eamonn Keogh

1
 

1
Department of Computer Science and Engineering, University of California, Riverside 

{yzhu015, zzimm001, myeh003}@ucr.edu, {philip, eamonn}@cs.ucr.edu 
2
Department of Earth Sciences, University of California, Riverside, {nshak006, gareth}@ucr.edu 

3
Department of Computer Science, University of New Mexico, mueen@cs.unm.edu 

 
Abstract—Time series motifs have been in the literature for 

about fifteen years, but have only recently begun to receive 

significant attention in the research community. This is perhaps 

due to the growing realization that they implicitly offer solutions 

to a host of time series problems, including rule discovery, 

anomaly detection, density estimation, semantic segmentation, 

etc. Recent work has improved the scalability to the point where 

exact motifs can be computed on datasets with up to a million 

data points in tenable time. However, in some domains, for 

example seismology, there is an insatiable need to address even 

larger datasets. In this work we show that a combination of a 

novel algorithm and a high-performance GPU allows us to 

significantly improve the scalability of motif discovery. We 

demonstrate the scalability of our ideas by finding the full set of 

exact motifs on a dataset with one hundred million subsequences, 

by far the largest dataset ever mined for time series motifs. 

Furthermore, we demonstrate that our algorithm can produce 

actionable insights in seismology and other domains. 

Keywords—Time series; joins; motifs; GPUs. 

I. INTRODUCTION  

Time series motifs are approximately repeated 
subsequences found within a longer time series. While time 
series motifs have been in the literature for fifteen years [5], 
they recently have begun to receive significant attention 
beyond the data mining community. Recent years have seen 
them applied to problems as diverse as understanding the 
network of genes affecting the locomotion of the C. elegans 
nematode [4] and cataloging speech pathologies in humans [3]. 

While significant progress has been made in how we 
define, score, rank and visualize motifs, actually discovering 
them in large datasets remains a bottleneck. To date, we are not 
aware of any attempts to mine any dataset larger than one 
million data points [11]. In this work we show how we can 
significantly improve the scalability of exact motif discovery 
both by leveraging GPU hardware, and by modifying the 
recently introduced STAMP algorithm [23]. The STAMP 
algorithm computes time series subsequence joins with an 
efficient anytime algorithm [23]. Our key observations here 
are: 

 The solution to the full exact 1NN time series join can be 
converted to the exact solution for any definition of time 
series motif [14], with only trivial extra effort. 

 The anytime property of STAMP may be useful to some 
users, but as we explain below, in our motivating domain 
of seismology it is not required or helpful. As we will 
show, if we are willing to forego this property, we can 
compute motifs at least an order of magnitude faster than 
STAMP can. Moreover, forgoing the anytime property 
also makes it much easier to leverage GPU hardware.  

In keeping with the STAMP name [23], we call our faster 
algorithm STOMP, Scalable Time series Ordered-search 
Matrix Profile, and its GPU-accelerated version GPU-STOMP.  

In this work we show that GPU-STOMP allows us to 
significantly push the scalability envelope. We demonstrate the 
scalability of our ideas by extracting motifs from a dataset with 
one hundred million objects. Such a computation requires 
computing (or admissibly pruning) 499,999,999,500,000,000 
pairwise Euclidean distances calculations. If each Euclidean 
distance calculation took 0.0000001 seconds, a brute force 
algorithm would require 1,585 years

1
. As we will show, we can 

compute this join in just twelve days. We recognize the twelve 
days seems like significant computational time, but consider 
that this data represents 58 days of continuous seismology 
recorded at 20Hz. Thus even at this massive scale we are much 
faster than real time. Fig. 1 previews a pair of repeating 
earthquake sequences (essentially, a time series motif [5]) 
discovered by our algorithm in a seismologic dataset. 

 

Fig. 1. A pair of repeating earthquake sequences (motifs) we discovered from 

seismic data recorded at a station near Mammoth Lakes on February 17th, 

2016. One occurrence (fine/red) is overlaid on top of another occurrence 
(bold/blue) that happened hours earlier. (best viewed in color). 

Here the two occurrences are very similar in spite of 
happening 148 minutes apart; however, the geophysics of 
earthquakes means that in principle we could see such similar 
events millennia apart. Naturally we are limited to the few 
decades humans have been recording such data (see Fig. 7).  
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The rest of this paper is organized as follows. In Section II 
we introduce background and related work in data mining and 
(briefly) seismology. In Section III we introduce the necessary 
definitions and notations, which allow us to introduce our 
algorithms in Section IV. We conduct an extensive empirical 
comparison in Section V, including comparisons to the most 
obvious rival methods. Finally, in Section VI we offer 
conclusions and directions for related work. 

II. BACKGROUND AND RELATED WORK 

A. Motif Discovery Background 

Motif discovery for time series was introduced in 2003 [5] 
(although the classic paper of Agrawal, Faloutsos and Swami  
foreshadows motifs by computing all-pair similarity for time 
series [1]); since then, it has created a flurry of research 
activity. One major direction has been to apply motifs to 
solving problems in domains as diverse as bioinformatics [4], 
speech processing [3], robotics, neurology and entomology 
[14]. The other major research focus has been extensions and 
generalizations of the original work, especially attempts to 
improve scalability [11][14]. These attempts at improving the 
scalability of motif discovery fall into two broad classes; 
approximate and exact motif discovery [11][14]. 

Clearly approximate motifs can be faster to compute, and 
may be useful in some domains. However, there are domains in 
which the risk of false negatives is simply unacceptable. 
Consider our motivating domain of seismology [24]. This is a 
domain in which false negatives could affect public policy, 
change insurance rates for customers, and conceivably cost 
lives by allowing a dangerous site to be developed for 
dwellings. Given that the task at hand is to find exact motifs, 
all known methods based on hashing [24] and/or data 
discretization [5] can be dismissed from consideration. 

Virtually every time series data mining technique has been 
applied to the motif discovery problem, including indexing 
[11][21], data discretization [5], triangular-inequality pruning 
[14], hashing [24], early abandoning etc. However, all these 
techniques rely on the assumption that the intrinsic 
dimensionality of time series is much lower than the recorded 
dimensionality [22]. This is generally true for data such as 
heartbeats and gestures, etc.; however, it is not true for 
seismograph data, which is intrinsically high dimensional. To 
see this, we performed a simple experiment. 

We measured the Tightness of Lower Bounds (TLB) for 
three types of data, using the two most commonly used 
dimensionality reduction representations for time series, DFT 
and PAA (In addition, PAA is essentially equivalent to the 
Haar wavelets for this purpose [22]). The TLB is defined as: 

TLB = LowerBoundDist(A,B) / TrueEuclideanDist(A,B) 

It is well understood that the TLB is near perfectly 
(inversely) correlated with wall-clock time, CPU operations, 
number of disk access or any other performance metric for 
similarity search, all-pair-joins, motifs discovery, etc. [22].  

Fig. 2 shows unambiguous results. There is some hope that 
we could avail current speed-up techniques when considering 
(relatively smooth and simple) ECGs, little hope that the noisy 
and more complex human activity would yield to such 

optimizations, and no hope that anything currently in the 
literature will help with seismological data. This claim is 
further borne out in our detailed experiments in Section V. 

 

Fig. 2. left) Samples from three datasets, ECG, Human Activity and 

Seismology (available in [17]). right) The tightness of lower bounds, averaged 

over 10,000 random pairs, using PAA and DFT. 

Even if we ignore this apparent death-knell for 
indexing/spatial access techniques, we could still dismiss them 
for other reasons, including memory considerations. As we 
shall see in Section IV, a critical property of our algorithm is 
that unlike all indexing/spatial access methods it does not need 
to explicitly extract the subsequences. For example, consider a 
time series of length 100 million, with eight bytes per value, 
requiring 0.8 GB. Our algorithm requires an overhead of seven 
other vectors of the same size (including the output), for an 
easily manageable total of 6.4 GB. However, any indexing 
algorithm that needs to extract the subsequences will increase 
memory requirements by at least O(d), where d is the reduced 
dimensionality used in the index [12]. Given that d may be 20 
or greater, this means the memory requirements grow to at 
least 16 GB. With such a large memory footprint, we are 
almost certainly condemned to a random access disk-based 
algorithm, dashing any hope of any speedup.  

A related advantage of our framework is that we can 
choose the subsequence length just prior to doing the motif 
discovery. In contrast, any index-based technique must commit 
to a subsequence length before building the index, perhaps 
hours/days before any actual searching could begin [20][22]. If 
such an index is built to support subsequences of say length 
200, it cannot be used to join subsequences of length 190 or 
205, etc. (See Section 1.2.3 of [20]). Thus if we change our 
mind about the length of patterns we are interested in, we are 
condemned to a costly rebuilding of the entire index.  

In summary, while we obviously are unable to absolutely 
guarantee that there is no other scalable solution to our task-at-
hand, we are very confident that there is no existing off-the-
shelf technology that can be used or adapted to allow us to get 
within two orders of magnitude of the results we obtain on the 
largest datasets.  

B. Seismological Background 

While our algorithms are completely general and can be 
applied to any domain, seismological data is of particular 
interest to us, due to its sheer scale and importance in human 
affairs. 
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In the early 1980s it was discovered that in telemetry of 
seismic data recorded by the same instrument from sources in 
given region there will be many similar seismograms [6]. 
Geller and Mueller [6] suggested that “The physical basis of 
this clustering is that the earthquakes represent repeated stress 
release at the same asperity, or stress concentration, along the 
fault surface.” These patterns are called “repeating earthquake 
sequence” in seismology, and exactly correspond to the more 
general term “time series motifs”. Fig. 1 shows an example of a 
repeating earthquake sequence pair from seismic data.  

A more recent paper notes that many fundamental problems 
in seismology can be solved by joining seismometer telemetry 
in search of these repeating earthquake sequence [24], 
including the discovery of foreshocks, aftershocks, triggered 
earthquakes, swarms, volcanic activity and induced seismicity. 
However, the paper further notes that an exact join with a 
query length of 200 on a data stream of length 604,781 requires 
9.5 days. Their solution, a transformation of the data to allow 
LSH based techniques, does achieve significant speedup, but at 
the cost of false negatives and the need for careful parameter 
tuning. For example, [23] notes that they need to set the 
threshold to a very precise 0.818 to achieve good results. While 
we defer a full discussion of experimental results until Section 
V, the ideas introduced in this paper can reduce the quoted 9.5 
days for exact motif discovery from a dataset of size 604,781, 
to less than one minute, without the need to tune any 
parameters and with a guarantee of no false negatives. 

It is important to note that this kind of speed up really is 
game-changing in this domain. It allows seismologists to 
quickly identify or detect earthquakes that are identical or 
similar in location without the need for trilateration, and can 
also provide useful information on relative timing and relative 
location of such events [2][9][10].  

Somewhat more controversially, some researchers have 
suggested that the slow slip on the fault accompanying non-
volcanic tremors (a sequence of Low Frequency Earthquakes, 
many of which are repeated) may temporarily increase the 
probability of triggering a large earthquake. Therefore, 
detecting and locating these repeating LFEs allows more robust 
short-term earthquake forecasting [9]. 

Finally, we note that seismologists have been early adopters 
of GPU technology [13] and other high performance 
computing paradigms. However, their use of this technology 
has been limited to similarity search, not motif search. 

III. NOTATION AND DEFINITIONS 

While we mostly follow the framework introduced in [23], 
for completeness we review all necessary definitions. 

A. Definitions  

We begin by defining the data type of interest, time series:  

Definition 1: A time series T is a sequence of real-valued 
numbers ti: T = t1, t2, ..., tn where n is the length of T. 

We are interested not in global, but local properties of time 
series. A local region of time series is called a subsequence: 

Definition 2: A subsequence Ti,m of a time series T is a 
continuous subset of the values from T of length m starting 

from position i. Formally, Ti,m = ti, ti+1,…, ti+m-1, where 1 ≤  i ≤  
n-m+1. 

We can take a subsequence and compute its distance to all 
subsequences in the same time series. We call this a distance 
profile: 

Definition 3: A distance profile Di of time series T is a 
vector of the Euclidean distances between a given query 
subsequence Ti,m and each subsequence in time series T. 
Formally, Di = [di,1, di,2,…, di,n-m+1], where di,j (1 ≤ i, j ≤ n-
m+1) is the distance between Ti,m and Tj,m. 

We assume that the distance is measured by Euclidean 
distance between z-normalized subsequences [22].   

We are interested in finding the nearest neighbors of all 
subsequences in T, as the closest pairs of this are the classic 
definition of time series motifs [5][14]. Note that by definition, 
the i

th
 location of distance profile Di is zero, and very close to 

zero just before and after this location. Such matches are called 
trivial matches in the literature [14]. We avoid such matches by 
ignoring an “exclusion zone” of length m/4 before and after the 
location of the query. In practice, we simply set di,j to infinity 
(i-m/4 ≤ j ≤  i+m/4) while evaluating Di.  

We use a vector called matrix profile to represent the 
distances between all subsequences and their nearest 
neighbors: 

Definition 4: A matrix profile P of time series T is a vector 
of the Euclidean distances between each subsequence Ti,m and 
its nearest neighbor (closest match) in time series T. Formally, 
P = [min(D1), min(D2),…, min(Dn-m+1)], where Di (1 ≤ i ≤  n-
m+1) is the distance profile Di of time series T. 

We call this vector matrix profile because one (naïve and 
space-inefficient) way to compute it would be to compute the 
full distance matrix of all pairs of subsequences in time series 
T, and then evaluate the minimum value of each column. Fig. 3 
illustrates both a distance profile and a matrix profile created 
on the same raw time series T. 

 

Fig. 3. top) One distance profile (Definition 3) created from a random 

subsequence Q of T. If we created distance profiles for all possible 
subsequences of T, the element-wise minimum of this set would be the matrix 

profile (Definition 4) shown at (bottom). Note that the two lowest values in P 

are at the location of the 1st motif [5][14]. 

One important fact to note is that the full distance matrix is 
symmetric: Di is both the i

th
 row and the i

th 
column of the full 

distance matrix. Fig. 4 shows this more concretely.  

T, synthetic data

D, a distance profile

Q, query of 

length m

m/4m/40 2,500

Note that |D| = |T|-|Q|+1

0 2,500

Note that |P| = |T|-|Q|+1

T, synthetic data

P, a matrix 

profile



 

Fig. 4. An illustration of the relationship between the distance profile, the 

matrix profile and the full distance matrix. For clarity, we note we do not 

actually create the full distance matrix, as this would have untenable memory 
requirements. 

The i
th
 element in the matrix profile P tells us the Euclidean 

distance from subsequence Ti,m to its nearest neighbor in time 
series T. However, it does not tell us where that neighbor is 
located. This information is recorded in a companion data 
structure called the matrix profile index. 

Definition 5: A matrix profile index I of time series T is a 
vector of integers: I=[I1, I2, … In-m+1], where Ii=j if di,j = 
min(Di).  

By storing the neighboring information this way, we can 
efficiently retrieve the nearest neighbor of query Ti,m by 
accessing the i

th
 element in the matrix profile index. 

To briefly summarize this entire section: we can create two 
meta time series, the matrix profile and the matrix profile 
index, to annotate a time series T with the distance and location 
of all its subsequences’ nearest neighbors within itself. As the 
reader may already have realized, the smallest pair of values in 
the matrix profile correspond to the best motif pair under the 
classic definition [11][14][5], and the corresponding values in 
the matrix profile index tell us where the motifs are located. 
Moreover, as both [23][14] argue, the top-k motifs, range 
motifs, and any other reasonable variant of motifs can trivially 
be computed given all the information in the matrix profile, the 
focus of the rest of this paper. 

B. A Brief  Review of the STAMP Algorithm 

The recently-introduced STAMP algorithm can efficiently 
compute the full and exact matrix profile and matrix profile 
index of a given time series [23]. The STAMP algorithm 
essentially evaluates the distance profile Di of query 
subsequence Ti,m by exploiting FFT to calculate the dot product 
between Ti,m and all subsequences of time series T. The overall 
time complexity of the algorithm is O(n

2
logn) and space 

complexity is O(n), where n is the length of time series T. The 
STAMP algorithm can process a time series with up to a 
million data points in tenable time. However, to tackle the 
problems in our motivating domain seismology, there is an 
unquenchable need to process even larger datasets. It would 
take STAMP more than 20 years to analyze a seismology time 
series sampled at 20Hz for about 2 months, which is of length 
100 million (see TABLE IV).  In the next section, we will 
show a new and fast algorithm which, when built on top of a 
GPU, can finish processing the same time series in just 12 
days. 

IV. ALGORITHMS 

In this section we begin by showing that we can improve 
upon the STAMP algorithm [23] to create the much faster 
STOMP algorithm. We then further demonstrate that the 
architecture of STOMP lends itself to porting to GPUs. 

A. The STOMP Algorithm 

As we shall explain below, STOMP is similar to STAMP 
[23] in that it can be seen as highly optimized nested loop 
searches, with the repeated calculation of distance profiles as 
the inner loop. However, while STAMP must evaluate the 
distance profiles in random order (to allow its anytime 
behavior), STOMP performs an ordered search. It is by 
exploiting the locality of these searches, that we can reduce the 
time complexity by a factor of O(logn).  

Before we explain the details of the algorithm, we first 
introduce a formula to calculate the z-normalized Euclidean 
distance di,j of two time series subsequences Ti,m and Tj,m using 
their dot product, QTi,j: 

 𝑑𝑖,𝑗 = √2𝑚(1 −
𝑄𝑇𝑖,𝑗−𝑚𝜇𝑖𝜇𝑗

𝑚𝜎𝑖𝜎𝑗
) 

Here m is the subsequence length, μi is the mean of Ti,m, μj 
is the mean of Tj,m, σi is the standard deviation of Ti,m, and σj is 
the standard deviation of Tj,m,  

The technique introduced in [20] allows us to obtain the 
means and standard deviations with O(1) time complexity; 
thus, the time required to compute di,j depends only on the time 
required to compute QTi,j. Here we claim that QTi,j can also be 
computed in O(1) time, once QTi-1,j-1 is known. 

Note that QTi-1,j-1 can be decomposed as: 

 𝑄𝑇𝑖−1,𝑗−1 = ∑ 𝑇𝑖−1+𝑘𝑇𝑗−1+𝑘
𝑚−1
𝑘=0  

and QTi,j  can be decomposed as: 

 𝑄𝑇𝑖,𝑗 = ∑ 𝑇𝑖+𝑘𝑇𝑗+𝑘
𝑚−1
𝑘=0  

Thus we have: 

 𝑄𝑇𝑖,𝑗 = 𝑄𝑇𝑖−1,𝑗−1 − 𝑡𝑖−1𝑡𝑗−1 + 𝑡𝑖+𝑚−1𝑡𝑗+𝑚−1 

Our claim is thereby proved. 

The relationship between QTi,j and QTi-1,j-1 indicates that 
once we have the distance profile Di-1 of time series T with 
regard to Ti-1,m, we can obtain the distance profile Di with 
regard to Ti,m in just O(n) time.  

However, we cannot benefit from the relationship between 
QTi,j and QTi-1,j-1 in the special case when i=1 or j=1. This 
problem is easy to solve: we can pre-compute the dot product 
values in these two special cases with FFT, as shown in 
TABLE I. Concretely, we use SlidingDotProduct(T1,m, T) to 
calculate the first dot product vector QT1 = [QT1,1, QT1,2, …, 

D1 D2 … Dn-m+1

D1 d1,1 d1,2 … d1,n-m+1

D2 d2,1 d2,2 … d2,n-m+1

… … … … …

Dn-m+1 dn-m+1,1 dn-m+1,2 … dn-m+1,n-m+1

P min(D1) min(D2) … min(Dn-m+1)



QT1,n-m+1] = [QT1,1, QT2,1, …, QTn-m+1,1]. The dot product vector 
is stored in memory and used as needed.  

TABLE I. CALCULATE SLIDING DOT PRODUCT WITH FFT 

Procedure SlidingDotProduct(Q, T) 

Input: A query Q, and a user provided time series T 

Output: The dot product between Q and all subsequences in T  
1 

2 

3 

4 

5 

6 

7 

n ← Length(T), m ← Length(Q) 

Ta ← Append T with n zeros   

Qr ← Reverse(Q)  

Qra ← Append Qr with 2n-m zeros 

Qraf ← FFT(Qra), Taf ← FFT(Ta) 

QT ← InverseFFT(ElementwiseMultiplication(Qraf, Taf)) 

return QT[m:n] 

We are now in a position to introduce our STOMP 
algorithm in TABLE II. 

TABLE II. STOMP ALGORITHM 

Procedure STOMP(T, m) 

Input: A time series T and a subsequence length m 

Output:  Matrix profile P and the associated matrix profile index I of T 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

n ← Length(T), l ← n-m+1 

μ, σ ← ComputeMeanStd(T,  m)                // see [20] 

QT ← SlidingDotProduct(T[1:m], T), QT_first ← QT  

D ← CalculateDistanceProfile(QT, μ, σ) // see  

P← D, I← ones                     // initialization  

for i = 2 to l                           // in-order evaluation 

    for j= l downto 2               // update dot product, see  

        QT[j] ← QT[j-1]-T[j-1]×T[i-1]+T[j+m-1]×T[i+m-1] 

    end for 

    QT[1] ← QT_first[i] 

    D ← CalculateDistanceProfile(QT, μ, σ, i)  // see  

    P, I ← ElementWiseMin(P, I, D, i) 

end for 

return P, I 

The algorithm begins in line 1 by computing the matrix 
profile length l. In line 2 we precalculate the mean and standard 
deviation of every subsequence in T. Line 3 calculates the first 
dot product vector QT with the algorithm in TABLE I. In line 5 
we initialize the matrix profile P and matrix profile index I. 
The loop in lines 6-13 calculates the distance profile of every 
subsequence of T in sequential order, with lines 7-9 updating 

QT according to . We update QT[1] in line 10 with the pre-
computed QT_first in line 3. Line 11 calculates distance profile 

D according to . Finally, line 12 compares every element of 
P with D: if D[j] < P[j], then P[j] = D[j], I[j] = i. 

The time complexity of STOMP is O(n
2
); thus, we have 

achieved a O(logn) factor speedup over STAMP [23]. 
Moreover, it is clear that O(n

2
) is optimal for any exact motif 

algorithm in the general case. The O(logn) speedup clearly 
makes little difference for small datasets, those with just a few 
tens of thousands of datapoints [5].  However, as we consider 
the datasets with millions of datapoints, this O(logn) factor 
begins to produce a very useful order-of-magnitude speedup. 

To better understand the efficiency of STOMP, it is 
important to clarify the time complexity of the classic brute 
force algorithm is O(n

2
m).  The value of m is domain 

dependent, but in Section V.F we consider real world problems 
where it is 2,000. Most techniques in the literature gain 
speedup by shaving a little off the n

2
 factor; however, we gain 

speedup by reducing the m factor to O(1). Moreover, it is 

important to remember that the techniques in the literature can 
only reduce this n

2
 factor if the data cooperates by having a low 

intrinsic dimensionality (recall Fig. 2), and the domain requires 
a short subsequence length. In contrast, the speedup for 
STOMP is completely independent of both the structure of the 
data and the subsequence length. 

In spite of this dramatic improvement, it still takes STOMP 
approximately 5-6 hours to process a time series of length one 
million. Can we further reduce the time? 

Note that the STOMP algorithm is extremely amenable to 
parallel computing frameworks. This is not a coincidence; the 
algorithm was conceived with a view to eventual hardware 
acceleration. Recall that the space requirement for the 
algorithm is only O(n); there is no data dependency in the main 
inner loop of the algorithm (lines 7-9 of TABLE II), so we can 
update all entries of QT in parallel. The evaluation of each 
entry in vectors D, P and I in lines 11 and 12 are also 
independent of each other. In the next section, we will 
introduce a GPU-based version of STOMP, taking advantage 
of these observations to further speed up the evaluation of 
matrix profile and thus motif discovery.  

B. Porting STOMP to a GPU Framework 

The Graphic Processor Unit, or GPU, is “especially well-
suited to address problems that can be expressed as data-
parallel computations” [15]. It has its own memory, and can 
launch multiple threads in parallel. Here we use the ubiquitous 
Single Instruction Multiple Data (SIMD) NVIDIA CUDA 
architecture, where we can assign multiple threads to process 
the same set of instructions on multiple data.  

The threads on the GPU are managed in thread blocks. 
Threads in a thread block run simultaneously, and can 
cooperate with each other through shared local resources. A 
CUDA function is called a kernel. When we launch a kernel, 
we can specify the number of blocks, and the number of 
threads in each block to run on GPU. For example, the 
NVIDIA Tesla K80 allows launching at most 1024 threads 
within a block and as many as 2

63
 blocks (a total of 2

73
 

threads), which is much more than enough to process a time 
series of length 100 million.  

The GPU implementation of the STOMP algorithm in 
TABLE II can be decomposed into four steps: 

 CPU copies the time series to GPU global memory. 

 CPU launches GPU kernels to evaluate μ, σ, initial 
QT, D, P and I. 

 CPU iteratively launches GPU kernels to update QT, 
D, P and I. 

 CPU copies final output (P and I) from GPU. 

In the first step, the CPU copies time series T (input vector 
of TABLE II) to the global memory of GPU. The time used to 
copy a time series of length 100 million takes less than a 
second. Note that in order to run the STOMP algorithm, we 
need to allocate space to store eight vectors in the GPU global 
memory: T, μ, σ, QT, QT_first, D, P and I. A double-precision 
time series of length 100 million is approximately 0.8GB, so 
the algorithm consumes approximately 6.4GB global memory 



space. This is feasible for NVIDIA Tesla K40 and K80 cards; 
however, if the device used has less memory space available, 
we can simply split the time series into small chunks and 
evaluate one chunk at a time with the GPU.  

In the second step, the CPU launches GPU kernels to 
evaluate the vectors in parallel. The mean and standard 
deviation vectors in line 2 of TABLE II can be efficiently 
evaluated by CUDA Thrust [15]. The first QT vector in line 3 
can be evaluated in parallel by applying cuFFT, the NVIDIA 
CUDA Fast Fourier Transform [16] to the SlidingDotProduct 
function in TABLE I. We assign a total of n-m+1 threads to 
evaluate QT_first, D, P and I in lines 3-5 in parallel, with the j

th
 

thread processing the j
th
 entry of these vectors one by one.  

Now that we have initialized QT, D, P and I, we can start to 
update them iteratively. In the third step, the CPU runs the 
outer loop in lines 6-13 of TABLE II iteratively. In each 
iteration the CPU launches a GPU kernel with n-m+1 threads, 
parallelizing the evaluation of QT, D, P and I. As shown in Fig. 
5, the first thread reads QT[1] from the precomputed QT_first 
vector, while the second to the last threads evaluate their 

corresponding entry of QT using

Note that in contrast to the CPU STOMP algorithm, which 
uses only one vector QT to store both QTi-1 and QTi, here we 
need to use two vectors to separate them. The reason is that as 
the threads evaluate entries in QT in parallel, we need to avoid 
any entry to be written before it is read. A simple and efficient 
way to do this is to create two vectors, QT_odd and QT_even. 
When the outer loop variable i in line 6 is even, the threads 
read from QT_odd and write to QT_even; when i is odd, the 
threads read data from QT_even and write to QT_odd. After 

this, the threads evaluate D with , and the j
th
 thread updates 

P and I if D[j] < P[j]. 

 

Fig. 5. Division of work among threads in the third step of GPU STOMP. 

When all iterations complete, we have reached the last step 
of GPU STOMP, where the CPU copies P and I back to the 
system memory.  

C. Further Parallelizing STOMP with multiple GPUs 

The above parallelization scheme is suitable if we only 
have one single GPU device. Can we further reduce the 
processing time if there are two or more GPUs available? 

Thus far, we have been using CPU to iteratively control the 
outer loop of the STOMP algorithm in TABLE II. We start by 
computing the first distance profile (the first row) in Fig. 4 and 
its corresponding QT vector. Then in each iteration we 
compute a new row of the distance matrix in Fig. 4, and 

maintain the minimum-so-far values of each column in vector 
P. When the iteration is completed, P becomes the exact matrix 
profile. 

This outer loop computation can be further parallelized.  
Assume we have k independent GPU devices, and we also 
have (n-m+1)/k = q. We can then divide the distance matrix in 
Fig. 4 into k sections: device 1 evaluates the 1

th 
to the q

th
 rows, 

device 2 evaluates the (q+1)
th
 to the (2q)

th
 rows, etc. 

Essentially, device k uses the parallelized version of 
SlidingDotProduct function in TABLE I to calculate QTq(k-1)+1 
and Dq(k-1)+1, then evaluates the following q-1 rows iteratively. 
The k devices can run in parallel, and when the evaluation 
completes, we can simply find the minimum among all the k 
matrix profile outputs. In short, we can achieve a k-times speed 
up by using k identical GPU devices. 

By porting all the introduced techniques to NVIDIA Tesla 
K80, which contains two GPU devices on the same unit, we 
are able to obtain the matrix profile and matrix profile index of 
a seismology time series of length 100 million within 19 days. 
Are there any further optimizations left? 

D. A Technique to Further Accelerate GPU STOMP 

Fig. 5 showed the process to compute the i
th
 row of the 

distance matrix in Fig. 4 by n-m+1 parallel threads. Recall that 
the distance matrix is symmetric; half of the distance 
computations can be saved if we instead only evaluate the i

th
 to 

the last columns. We show this strategy in Fig. 6.top. 

However, note that we would like to maintain the O(n) 
space complexity of our algorithm; if we simply move on to 
the (i+1)

th
 row in Fig. 4 without further processing, then Pi = 

min(d1,i, d2,i, …, di,i), and would not be updated anymore. To fix 
this, we need to launch another kernel after Fig. 6.top is 
completed. The new kernel is shown in Fig. 6.bottom.  

 

Fig. 6. Modifying the third step of GPU-STOMP. top) Launch only n-m-i+2 

threads (instead of the n-m+1 threads in Fig. 5) this time at the ith iteration. 

bottom) Launch another kernel to evaluate the final value of Pi. 
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Essentially, we have used an analogous reduction technique 
as in [7] to obtain dmin = min(di,i+1, di,i+2, …, di,m+n-1), which also 
equals min(di+1,i, di+2,i, …, dn-m+1,i) because of symmetry. If dmin 
< Pi, we set Pi = dmin, so that Pi = min(Di). Though we need to 
launch one more kernel to process each row, which takes some 
extra time, the cost is much less than what we save here when 
the time series length is large. For example, the new technique 
reduced the time to process a time series of length 100 million 
from 19 days to about 12 days on NVIDIA Tesla K80. 

Note that we are launching fewer and fewer threads in each 
iteration. To apply this new technique to multiple GPUs, we 
need to ensure that each GPU is loaded with similar amount of 
work, so that they will finish in similar time. Here, for 

NVIDIA Tesla K80, we computed the first (n-m+1)(1-1/√2) 

distance profiles with the first GPU, and the last (n-m+1)/√2 
distance profiles with the second GPU.  

V. EMPIRICAL EVALUATION 

We have designed all our experiments such that they can be 
easily reproducible (although some require access to a GPU). 
To allow this, we have built a webpage [17] which contains all 
datasets and code used in this work. We begin by a careful 
comparison to STAMP, which is obviously the closest 
competitor; we consider more general rival methods later.  

Unless otherwise noted, we used an Intel i7@4GHz PC 
with 4 cores to evaluate all the CPU-based algorithms; we used 
a server with two Intel Xeon E5-2620@2.4GHz cores and an 
NVIDIA Tesla K80 GPU to evaluate GPU-STOMP. 

A. STAMP vs STOMP  

 We begin by demonstrating that STOMP is faster than 
STAMP, and that this difference grows as we consider 
increasingly large datasets. We further measure the gains made 
possible by using GPU-STOMP. In TABLE III we measure the 
performance of the three algorithms on increasingly long 
random walk time series with a fixed subsequence length 256. 

TABLE III. TIME REQUIRED FOR MOTIF DISCOVERY WITH 𝑚 = 256, VARYING 

𝑛, FOR THE THREE ALGORITHMS UNDER CONSIDERATION 

Algorithm              Value of n 217 218 219 220 221 

STAMP 15.1 min 1.17 hours 5.4 hours 24.4 hours 4.2 days 

STOMP 4.21 min 0.3 hours 1.26 hours 5.22 hours 0.87 days 

GPU-STOMP 10 sec 18 sec 46 sec 2.5 min 9.25 min 

Note that we choose m’s length as a power-of-two only to 

offer the best case for (the FFT-based) STAMP; our algorithm 

is agnostic to such issues.  

A recent paper on finding motifs in (only) seismograph 

datasets also considers a dataset of about 2
19

 in length and 

reports taking 1.6 hours, about the same as STOMP [24]. 

However, their method is probabilistic and allows false 

negatives (twelve of which were actually observed, after 

checking against the results of a 9.5 day brute-force search 

[24]). Moreover, it requires careful tuning of several 

parameters, and does not lend itself to GPU implementation. 

We wish to consider the scalability of even larger datasets 
with GPU-STOMP. However, in order to do so we must 
estimate the time for the two other algorithms. Fortunately, 

both the other algorithms allow an approximate prediction of 
the time needed, given the data length n. To obtain the 
estimated time, we evaluated only the first 100 distance 
profiles of both STAMP and STOMP, and multiplied the time 
used by (n-m+1)/100. In TABLE IV we consider much larger 
datasets, one of which reflects the data used in a case study in 
Section V.C.  

TABLE IV. TIME REQUIRED FOR MOTIF DISCOVERY WITH VARIOUS 𝑚 AND 

VARIOUS 𝑛, FOR THE THREE ALGORITHMS UNDER CONSIDERATION 

Algorithm                             m | n 2000 | 17,279,800 400 | 100,000,000 

STAMP (estimated) 36.5 weeks 25.5 years 

STOMP (estimated) 8.4 weeks 5.4 years 

GPU-STOMP (actual) 9.27 hours 12.13 days 

Note that the 100-million-length dataset is one hundred 

times larger than the largest motif search in the literature [11].  

All three algorithms under consideration have the very 

desirable property that the time required is independent of the 

subsequence length m. To see this, in TABLE V we measure 

the time required with n fixed to 2
17

, for increasing m.  

TABLE V. TIME REQUIRED FOR MOTIF DISCOVERY WITH 𝑛 = 217, VARYING 𝑚, 
FOR THE THREE ALGORITHMS UNDER CONSIDERATION 

Algorithm             Value of m 64 128 256 512 1,024 

STAMP 15.1 min 15.1 min 15.1 min 15.0 min 14.5 min 

STOMP 4.23 min 4.33 min 4.21 min 4.23 min 2.92 min 

GPU-STOMP 10 sec 10 sec  10 sec 10 sec 10 sec 

Note that the time required for the longer subsequences is 
actually slightly shorter. This unintuitive fact is because the 
number of pairs that must be considered for a time series join 
[23] is (n-m+1)

2
, so as m becomes larger, the number of 

comparisons becomes slightly smaller. 

B. STOMP vs State-of-the-Art Motif Discovery Algorithms 

Beyond independence of the subsequence length 
demonstrated in TABLE V, all three matrix profile-based 
algorithms also have the very desirable property that the time 
required is independent of data under consideration. To see 
this, we will compare to the recently introduced Quick-Motif 
framework [11], and the more widely known MK algorithm 
[14]. The Quick-Motif method was the first technique to do 
exact motif search on one million subsequences.  

To level the playing field, we do not avail of GPU 
acceleration, but use the identical hardware (a PC with Intel 
i7-2600@3.40GHz) and programming language for all 
algorithms. Note that for a fair comparison with STAMP [23], 
which is written in MATLAB, in Section V.A we measured 
the performance of STOMP based on its MATLAB 
implementation. However, because the two rival methods in 
this section (Quick-Motif and MK) are written in C/C++, here 
we measure the runtime of (the CPU version of) STOMP 
based on its C++ implementation.  

We use the original author’s executables [18] to evaluate 
the runtime of both MK and Quick-Motif. The reader may 
wonder why the experiments here are less ambitious than in 
the previous sections. The reason is that beyond time 
considerations, the rival methods have severe memory 



requirements. For example, for a seismology data with m = 
200, n = 2

18
, we measured the Quick-Motif memory footprint 

as large as 1.42 GB. In contrast, STOMP requires only 14MB 
memory for the same data, which is less than 1/100 of this. If 
this ratio linearly interpolates, Quick-Motif would need more 
than ½ terabyte of main memory to tackle the one-hundred-
million benchmark, which is simply infeasible. Moreover, for 
Quick-Motif it is possible that a different dataset of the exact 
same size could require a larger or smaller footprint. In 
contrast, the space required for STOMP is independent of both 
the structure of data and the subsequence length.  

This severe memory requirement makes it impossible to 
compare the STOMP algorithm with Quick-Motif on the 
seismology data, since Quick-Motif often crashed with an out-
of-memory error as we varied the value of m. However, we 
noticed that the memory footprint for Quick-Motif tends to be 
much smaller with smooth data. Therefore, instead of 
comparing performance of the algorithms on seismology data, 
in TABLE VI we experimented on the much smoother ECG 
dataset (used in [20]), which is an ideal dataset for both MK 
and Quick-Motif to achieve their best performance. 

TABLE VI. TIME REQUIRED FOR MOTIF DISCOVERY WITH 𝑛 = 218, VARYING 𝑚, 
FOR VARIOUS ALGORITHMS 

Algorithm            m            512 1,024 2,048 4,096 

STOMP 501s (14MB) 506s (14MB) 490s (14MB) 490s (14MB) 

Quick-Motif 27s (65MB) 151s (90MB) 630s (295MB) 695s (101MB) 

MK 2040s (1.1GB) N/A (>2GB) N/A (>2GB) N/A (>2GB) 

As we can see, both the runtime and memory requirement 
for STOMP are independent of the subsequence length. In 
contrast, Quick-Motif and MK both scale poorly in 
subsequence length in both runtime and (especially) memory 
usage. Note that the memory requirement of Quick-Motif is 
not monotonic in m, as reducing m from 4,096 to 2,048 
requires three times as much memory. This is not a flaw in 
implementation (we used the author’s own code) but a 
property of the algorithm itself.  

In retrospect, this poor showing of both Quick-Motif and 
MK are unsurprising given the observations in Fig. 2. Both 
algorithms can be fast in ideal situations, with smooth data, 
short subsequence lengths, and “tight” motifs in the data. But 
both can, and do, require very large memory space and 
degenerate to brute-force search in less ideal situations. 
Moreover, as we will show in the next two sections, STOMP 
is actually computing much more useful information than the 
two rival methods.  

C. Case Studies in Seismology: Infrequent Earthquake Case 

To allow confirmation of the correctness and utility of 
STOMP, we begin by considering a dataset for which we 
know the answer from external sources. On April 30

th
, 1996, 

there was an earthquake of magnitude 2.12 in Sonoma 
County, California

2
. Then, on December 29

th
, 2009, about 

13.6 years later, there was another earthquake with a similar 
magnitude. We concatenated the two full days in question to 
create a single time series of length 17,279,800 (see TABLE 

                                                           
2
 A small earthquake of that magnitude would only be felt by 

attentive humans in the immediate vicinity of the epicenter. 

IV for timing results) and examined the top motifs with m = 
2,000 (twenty seconds). As Fig. 7.top shows, the top motif 
here is not an earthquake, but an unusual sensor artifact [8].  

 
Fig. 7. Motifs (colored) shown in context (gray). top) The top motif 

discovered in the Sonoma County dataset is a sensor artifact, as are the next 

three motifs (not shown). bottom) The fifth motif is two true occurrences of an 

earthquake that happen 4,992 days apart. 

There are a handful of other such artifacts, however, as 
shown in Fig. 7.bottom, the fifth best motif is the two 
occurrences of the earthquake. These misleading sensors 
artifacts are common, but could be easily filtered out in 
several ways [8]. For example, they have a zero crossing rate 
that is an order of magnitude lower than true earthquakes.  

This example allows us to demonstrate yet another 
advantage of STƒOMP over rival methods. All the existing 
rival techniques can be expanded from top-1 motif discovery 
to top-k motif discovery; however, increasing k by even a 
modest amount will significantly degrade their speed.  

Furthermore, consider again the example in Fig. 7. There 
is simply no way we could have known the “magic” value of k 
= 5 beforehand. If k was set to a large value to “be on the safe 
side”, say k = 10, then all existing techniques would severely 
slow down because the best-so-far lower bound to prune 
unnecessary computations would be much looser. If we set k 
as a more conservative value, say k = 3, then we would miss 
the most valuable information in this seismology dataset. You 
might imagine that the rival methods could slowly increase 
from k to k+1 based on the user’s lack of satisfaction with the 
k motifs she has examined thus far; however, each adjustment 
of k will require all existing techniques to perform significant 
extra computation, even if they have cached the results of 
every calculation they have performed.   

In contrast, the time needed for STOMP is totally 
independent of k. We only need to run STOMP once; as the 
matrix profile obtained already contains all necessary 
information, it takes trivial extra effort to find the top k motif, 
no matter how large k is.  

D. Parameter Settings 

As we previously noted, STOMP (together with STAMP) 
is unique among motif discovery algorithms in being 
completely parameter-free. In contrast, Random Projection [5] 
has four parameters, Quick-Motif [11] has three parameters, 
Tree-Motif has four parameters [21], MK [14] has one 
parameter, and FAST has three parameters [24].  
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That being said, the reader may wonder about the only 
input value besides the time series of interest: the subsequence 
length m. Note that this is a required input for all the other 
existing techniques as well. We do not consider m a true 
parameter, as it is a user choice, reflecting her prior 
knowledge of the domain. Nevertheless, it is interesting to ask 
how sensitive motif discovery is to this choice, at least in the 
seismology domain that motivates us.  

To test this, we edited the data above such that the two 
earthquakes in Fig. 7.bottom happen exactly 13 minutes 20 
seconds apart. We reran motif discovery with m=2,000 
(twenty seconds), with double that length (m=4,000), and with 
half that length (m=1,000).  Fig. 8 shows the result. 

 
Fig. 8. top) Thirty minutes of seismograph data that has the two earthquakes 

from Fig. 7.bottom occur at 6min-40s and 20min. bottom) The matrix profile 

computed if we use the suggested subsequence length 2,000 (blue), or if we 
use twice the length (red), or half that length (green) 

The results are very reassuring. At least for earthquakes, 
motif discovery is not sensitive to the user input. Even a poor 
guess as to the best value for m will likely give good results. 

E. Case Studies in Seismology: Earthquake Swarm Case 

In the previous section we discovered a repeating 
earthquake source that has a frequency of about once per 13.6 
years. Here we consider earthquakes that are literally tens of 
millions of times more frequent. 

Forecasting volcanic eruptions is of critical importance in 
many parts of the world [19]. For example, on May 18

th
, 1980 

Mount St. Helens had a paroxysmal eruption that killed 57 
people [10]. It is conjectured that explosive eruptions are 
commonly preceded by elevated or accelerated gas emissions 
and seismicity, thus seismology is a major tool for both 
monitoring and predicting such events.  

In Fig. 9 we show a short section of the matrix profile of a 
seismograph recording at Mount St Helens. It is important to 
restate that this is not the raw seismograph data, but the matrix 
profile that STOMP computed from it.  

 
Fig. 9. The matrix profile of a seven-minute snippet from a seismograph 

recording at Mount St Helens. 

The image shows a stunning regularity. Repeated 
earthquakes are occurring approximately once every thirty-
eight seconds. This is consistent with the findings of a team 
from the US Geological Survey that reported that the 

earthquakes, which accompanied a dome-building eruption, 
appeared “... so regularly that we dubbed them ‘drumbeats’. 
The period between successive drumbeats shifted slowly with 
time, but was 30–300 seconds” [10].  

This example shows a significant advantage of our 
approach, that we share with STAMP but no other motif 
discovery algorithm. Instead of computing just O(1) distance 
values for the top k motifs, STOMP is computing all O(n) 
distances from every subsequence to their nearest neighbors. 
By plotting the entire matrix profile we can gain unexpected 
insights by seeing the motifs in context. For example, in the 
above we can see both the surprising periodicity of the 
earthquakes, and by comparing the smallest values in the 
matrix profile with the mean or maximum values, we can get a 
sense of how well the motifs are conserved, relative to 
“chance” occurrences. It could also potentially tell us whether 
there were changes to the earthquake source, reflecting 
changes in eruptive behavior over time. 

A recent paper performed a similar analysis on the Mount 
Rainier volcano, making the interesting and unexpected 
discovery that the frequency of earthquakes is correlated with 
snowfall [2]. However, the paper bemoans at the number of 
ad-hoc “hacks” that needed to make such an exploration 
tenable. For example, “In order to save on computing time, we 
cut out detections that are unlikely to contain a repeating 
earthquake event by excluding events with a signal width,” 
and “To save on computing time, we define that in order to be 
detected…” etc. [2]. However, the results in TABLE IV tell us 
that we could simply bypass these issues by spending a few 
hours computing the full exact answers. This would avoid the 
risk that some speedup “trick” makes us miss an interesting 
and unexpected pattern. 

F. A Case Study in Animal Behavior 

While seismology is the primary motivator for this work, 
nothing about our algorithm assumes anything about the data’s 
structure, or precludes us from considering other datasets. In 
this section we briefly consider telemetry collected from 
Magellanic penguins (Spheniscus magellanicus). The data was 
collected by attaching a small multi-channel data-logging 
device to the bird. The device recorded tri-axial acceleration, 
tri-axial magnetometry, pressure, etc. As shown in Fig. 10, for 
simplicity here we consider only Y-axis magnetometry.  

 

Fig. 10. left) The Magellanic penguin is a strong swimmer. right) A four-

minute snippet of the full dataset reveals high levels of noise and no obvious 
structure. 

The data is labeled by an observer with binoculars; thus we 
have a coarse ground truth for the animal’s behavior. The full 
data consists of 1,048,575 data points recorded at 40 Hz (about 
7.5 hours). We ran GPU-STOMP on this dataset, using a 
subsequence length of 2,000. This took our algorithm just 2.5 
minutes. As shown in Fig. 11, the top motif is a surprisingly 
well conserved “shark fin” like pattern. 
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Fig. 11. The top motif of length 2,000 discovered in the penguin dataset. Only 

three examples are shown for visual clarity, there are eight such patterns. 

What (if anything) does this pattern mean? Suggestively, 
we observed this pattern does not happen during any of the 
regions annotated as nesting, walking, washing, etc., but only 
during regions labeled foraging. Could this motif be related to 
a diving (for food) behavior? 

Fortunately, diving is the one behavior we can 
unambiguously determine from the data, as the pressure 
increases by orders of magnitude when the penguin is under 
water. We discovered that the motif occurs moments before 
each dive, and nowhere else.  

More generally, we see this example as being typical of the 
sort of interaction that motif discovery supports. In most cases 
motif discovery is not the end of analyses, but only the 
beginning. By correlating the observed motifs with other 
(internal or external) data we can form hypotheses and open 
avenues for further research. Recall the previous section; this is 
rather like how the team studying Mount Rainier’s seismology 
discovered that its earthquakes are correlated with snowfall [2]. 
We believe that the STOMP algorithm may enable many such 
unexpected discoveries in a vast array of domains.  

VI. CONCLUSIONS 

We introduced STOMP, a new algorithm for time series 
motif discovery, and showed that it is theoretically and 
empirically faster than its strongest rivals in the literature, 
STAMP [23], Quick-Motif [11] and MK [14]. In the limited 
domain of seismology, we showed that STOMP is at least as 
fast as the recently introduced FAST algorithm [24], but 
STOMP does not allow false negatives and does not need 
careful parameter tuning. Moreover, for datasets and 
subsequences lengths encountered in the real world, STOMP 
requires one to three orders of magnitude less memory than 
rival methods. This is not a gap that is likely to be closed by a 
new implementation of these algorithms. STOMP is unique 
among motif discovery algorithms in not exacting 
subsequences, but doing all the computations in-situ.  

We further showed optimizations that allow STOMP to 
take advantage of GPU architecture, opening an even greater 
performance gap and allowing the first exact motif search in a 
time series of length one-hundred-million. 

In future work we plan to investigate multidimensional and 
incremental versions of our algorithms. The latter may have 
implications for real-time earthquake warning systems, 
reducing the probability of false alarms by ultra-fast lookup of 
dictionaries of previous confirmed events [24]. 
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